第六章 極圖（Extremal Graphs）

極圖的研究可以獨立形成一門學問，從有圖論介紹開始，它一直扮演著非常重要
的角色。幾乎所有著名的圖論學者都曾在上面下過一番功夫，是研究圖結構
最重要的課題之一。

§1. 基本概念

定義 1.1. 任給一個圖 F，我們把 $ex(n; F)$ 定義為具有 n 個點但是沒有 F 爲子圖
的數字邊數。

例 1. $ex(n; K_3) = \left\lceil \frac{n^2}{4} \right\rceil$。

定義 1.2. 具有 $ex(n; F)$ 總的 n 點圖稱為是不具有 F 爲子圖的 n 點極圖。

例 2. 不具有 K_3 的 n 點極圖是 $K_{\left\lceil \frac{n}{3} \right\rceil}$。

這個性質稍後再加以證明，先看一些比較明顯性質。

定理 1.3. 令 G 的極點圈（內圈）有 $g \geq 3$ 個變化，則 $\delta(G) = \delta \geq 3$ 且內圈為 g 的圖
至少有 $n_0(g, \delta)$ 個點，其中

$$
n_0(g, \delta) = \begin{cases}
1 + \frac{\delta}{\delta - 2} \left((\delta - 1)^{\frac{g-1}{2}} - 1 \right), & \text{if } g \text{ is odd;} \\
2 \left((\delta - 1)^{\frac{g}{2}} - 1 \right), & \text{if } g \text{ is even.}
\end{cases}
$$

證明。

(i) $g \in \text{odd}, \ g = 2h + 1. \ \ \ \left(h = \frac{g - 1}{2} \right)$

任選一點 x，則不存在 z，使得 x 與 z 之間存在兩條長度不大於 h 的 $x - z$ 路徑，（因
為如此一來 $g \leq 2h$）。所以，由 x 開始出發，距離 1 的點有 δ 個，距離 2
的點有 $\delta(\delta - 1)$，…，距離 h 的點有 $\delta(\delta - 1)^{h-1}$，而且這些點都不一樣，這表示

$$
n_0(g, \delta) \geq 1 + \delta + \delta(\delta - 1) + \cdots + \delta(\delta - 1)^{h-1}
= 1 + \delta \left[\sum_{i=0}^{h-1} (\delta - 1)^i \right], \text{ 此為所求。}
$$

35
(ii) \(g \in \text{even} \), \(g = 2h \). \(\left(h = \frac{g}{2} \right) \)

任選兩相鄰的兩點 \(x \) 與 \(y \) ，則由 \(\{x, y\} \) 算起，距離 1 的點有 \(2(\delta - 1) \) 個，距離 2 的點有 \(2(\delta - 1)^2 \) 點，…，距離 \(h - 1 \) 的點有 \(2(\delta - 1)^{h-1} \) 個點，於是

\[
n_0(g, \delta) \geq 2 + 2(\delta - 1) + 2(\delta - 1)^2 + \cdots + 2(\delta - 1)^{h-1} = 2 \sum_{i=0}^{h-1} (\delta - 1)^i.
\]

Q.E.D.

例 3. \(g = 5 \), \(\delta = 3 \), \(n_0(5,3) \geq 1 + 3 + 3(3 - 1) = 10 \).

Peterson 圖就滿足這性質：因爲邊數最少所以是極圖。

例 4. \(g = 4 \), \(\delta = 3 \), \(n_0(4,3) \geq 2(1 + 2) = 6 \).

\(K_{3,3} \) 為極圖。

定理 1.4. 沒有奇（數邊）圈的 \(n \) 點圖最多有 \(\left\lfloor \frac{n^2}{4} \right\rfloor \) 邊。

證明. 因為沒有奇圈，所以這樣的圖必定是二分圖 \((\cdot) \)，而 \(n \) 點的二分圖中邊

數最多的圖是 \(K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lfloor \frac{n}{2} \right\rfloor} \)，它有 \(\left\lfloor \frac{n^2}{4} \right\rfloor \) 邊（此圖是唯一？）

Q.E.D.

定理 1.5. 令 \(n \geq 2h + 2 \)，則點數為 \(n \)，最小度數至少為 \(h \) 的非連通圖最多有

\[
\left(\frac{h+1}{2} \right) + \left(\frac{n-h-1}{2} \right)
\]

邊，而且極圖 \(K_{h+1} \cup K_{n-h-1} \) 為唯一的極圖。

證明. 令 \(G \) 為任意的非連通圖，則 \(V(G) = A \cup B \)，\(A \) 中的點均不與 \(B \) 中的點相

鄰，所以 \(|E(G)| \leq \left(\frac{|A|}{2} \right) + \left(\frac{|B|}{2} \right) \)。

由於 \(\delta(G) \geq h \)，令 \(x \in V(G) \) 使 \(\deg_G(x) = \delta(G) \)。不失一般性，假設 \(x \in A \) ，則 \(|A| \geq \delta(G) + 1 \geq h + 1 \)。由簡便計算得

\[
\left(\frac{h+1}{2} \right) + \left(\frac{n-h-1}{2} \right) \leq \left(\frac{|A|}{2} \right) + \left(\frac{|B|}{2} \right) \leq \left(\frac{h+1}{2} \right) + \left(\frac{n-h-1}{2} \right),
\]

所以邊數的上界確定，極圖的形式也隨之而確定。

Q.E.D.
定理 1.6. (Pósa)
令 G 爲至少三點的連通圖它滿足任意不相鄰的兩點 x 與 y，
$d(x) + d(y) \geq k$。則當 $k = n$ 時，G 有一個哈米爾頓圈，而當 $k < n$ 時，G 有一條長度為 k 的路徑及一個長度不小于 $\frac{k + 2}{2}$ 的圈。

證明.
(i) $k = n$。假設 G 不是哈米爾頓圖，則 G 中可以找到一條最長的路徑
$$P = x_1x_2x_3 \cdots x_n, n > l > 1, \text{ 且 } x_i \neq x_j \text{ 於是 } N(x_i) \leq V(P), N(x_j) \leq P, \text{ 而且 } x_i \sim x_{i+1}$$
與 $x_i \sim x_j$ 不可以同時成立。（？）這現象表示 $\Gamma(x_i) = \{x_j | x_i, x_j \in E(G)\}$ 與
$$\Gamma^+(x_i) = \{x_i \mid x_i, x_j \in E(G)\} \text{ 為互斥的集合，而且 } \Gamma(x_i) \cup \Gamma^+(x_i) \leq \{x_2, x_3, \cdots, x_n\}$$
是 $k \leq d(x_i) + d(x_j) \leq n - l - 1$。

可是 $n = k$，所以 G 爲哈米爾頓圖。
(ii) $k < n$。由（！），$k \leq l - 1$；如果 $l \leq k$ 則矛盾。所以 G 必定包含一條長度為 k 的路徑。最後我們證明有一圈它的長度至少為 $\frac{k + 2}{2}$。不失一般性，令
$$d(x_i) \geq d(x_j), \text{ 所以 } d(x) \geq \left\lfloor \frac{k}{2} \right\rfloor, \text{ 令 } t = \max \{j \mid x_i, x_j \in E(G)\}, \text{ 於是 } (x_i, x_2, \cdots, x_t)$$
長度至少為 $d(x_i) + 1 \geq \left\lfloor \frac{k}{2} \right\rfloor + 1$。
Q.E.D.

（註）Pósa 定理並非“發現極圈”的性質，但是，它提供了一些概念，讓我們了解到當邊數夠多時，會有一個不小的圈及一條很長的路徑。

以下是一個與路徑有關的性質。

定理 1.7. 令 G 爲不含 P_{k+1} 的 n 點圖，則 G 最多有 $\frac{(k-1)n}{2}$ 個邊，同時它的極圈為
$$K_1 \cup K_2 \cup \cdots \cup K_k \cup K_s \quad (n = tk + s, 0 \leq s \leq k)$$

證明. 利用歸納法，當 $n \leq k$ 時顯然成立。現在假設 $n > k$；如果 G 不是連通圖，
則 $V(G) = A \cup B$，A 中的點皆不與 B 中的點相鄰，於 $G[A] \text{ 與 } G[B]$ 分別最多有
$$\frac{(k - 1)|A|}{2} \text{ 及 } \frac{(k - 1)|B|}{2} \quad \text{ 個邊，所以得證。另一方面，如果 } G \text{ 爲連通圖，則 } G \text{ 中不含 }$$
K_1 且存在一點 x，$d(x) \leq \frac{k - 1}{2}$。（否則由定理 1.6，$G$ 有一條長度為 k 的路徑。）
考慮 $G - x$，它不是 $n - 1$ 點的極圈而且最長路徑長度必小於 k，所以
\[|E(G)| = d(x) + |E(G-x)| < \frac{k-1}{2} + \frac{(k-1)(n-1)}{2} = \frac{(k-1)n}{2}. \quad \text{Q.E.D.} \]

定義 1.8. Turán 圖，\(T_r(n) \)，為 \(n \) 點的完全 \(r \) 分圖，其中它的 \(r \) 部份分別具有

\[\left\lfloor \frac{n}{r} \right\rfloor, \left\lfloor \frac{n}{r} \right\rfloor, \ldots, \left\lfloor \frac{n}{r} \right\rfloor \] 個點。

引理 1.9. 令 \(G \cong K_{n_1,n_2,\ldots,n_r} \) 爲 \(n \) 點的完全 \(r \) 分圖，則 \(|E(G)| \leq |E(T_r(n))| \)。

定理 1.10. \(ex(n;K_{r+1}) = |E(T_r(n))| \) 而且極圖 \(T_r(n) \) 爲唯一。

證明. 對 \(r \) 作歸納：我們證明假如 \(G \) 不含 \(K_{r+1} \)，則存在一個 \(r \) 分圖 \(H \)，它滿足

\[V(G) = V(H) \] 而且 \(|E(G)| \leq |E(H)| \)。

顯然 \(r=1 \) 時成立，令 \(G \) 不含 \(K_{r+1} \)，\(\Delta(G) = k \) 以及 \(d(x) = k \)，再令

\[G' = G[N(x)] \]。因為 \(G' \) 的點都與 \(x \) 相鄰，所以 \(G' \) 中不含 \(K_r \)，由歸納法，存在一個 \(r-1 \) 分圖 \(H' \)，它滿足 \(|E(G')| \leq |E(H')| \)。現在，令 \(H = H' \triangledown S, S = V(G) \setminus N(x) \)。

於是 \(|E(H)| = |E(H')| + k(n-k) \)。再看 \(G \) 的邊數，

\[|E(G)| \leq |E(G')| + \sum_{v \in S} d_G(v) \leq |E(G')| + k(n-k) \leq |E(H)|. \]

接下來我們證明極圖的唯一性。

假設 \(|E(G)| = |E(T_r(n))| \)。由於 \(\delta(T_r(n)) \) 與 \(\Delta(T_r(n)) \) 相差最多是 1，所以

\[\delta(G) \leq \delta(T_r(n)) \leq \Delta(T_r(n)) \leq \Delta(G) \]

令 \(x \in V(G) \)，\(d(x) = \delta(G) \)，於是 \(|E(G-x)| = |E(G)| - d(x) \geq E(T_r(n-1)) \)，由歸納法，\(G-x \cong T_r(n-1) \)，此時 \(G-x \) 中最小的部分有 \(\left\lfloor \frac{n-1}{r} \right\rfloor \) 點，而 \(x \) 和 \(G-x \) 之間共有

\[n - \left\lfloor \frac{n}{r} \right\rfloor = (n-1) - \left\lfloor \frac{n-1}{r} \right\rfloor \]

個邊。

由於 \(x \) 和同一一部份的點不相鄰，所以 \(x \) 和不同部份的點皆相鄰，\(G \cong T_r(n) \)。

Q.E.D.

（註）上述定理可以直接證明 \(G \cong T_r(n) \)，然後再說明 \(r \) 分圖中以 \(T_r(n) \) 的邊數最多即可。以下再介紹一個比定理 1.10 強些的性質。
定理 1.11. (Erdős, 1970)
令 G 爲不含子圖 K_{r+1} 的 n 點圖，則必存在一個 r 分圖 H，它滿足 (i) $V(H) = V(G)$ 及 (ii) $\forall x \in V(G), \quad d_G(x) \leq d_H(x)$. 當 G 不為完全 r 分圖時，則必存在一個 $z \in V(G)$，使得 $d_G(z) < d_H(z)$。

証明. 對 r 作歸納，顯然 $r = 1$ 時成立。假設 $r \geq 2$，且對於小的 r 部成立。令 $x \in V(G), \quad d_G(x) = \Delta(G)$，且 $W = N_G(x)。$ 於是 $G_0 = G[W]$ 不含子圖 K_r。所以，由假設，存在一個 $r - 1$ 分圖 $H_0, \quad V(H_0) = W，$ 同時，$\forall y \in W, \quad d_{G_0}(y) \leq d_{H_0}(y)。$ 同時，當 G_0 不為完全 $r - 1$ 分圖時，$\exists y' \in W，$ s.t. $d_{G_0}(y') \leq d_{H_0}(y')$。

令 $H = H_0 \lor (V - W)$，顯然 H 爲 r 分圖。再看 $z \in V(H)$。

(i) 當 $z \in V - W, \quad d_H(z) = d_H(x) = d_G(x) = \Delta(G) \geq d_G(z)$。

(ii) 當 $z \in V(H_0) = W, \quad d_H(z) = d_{H_0}(z) + n - |W| \geq d_{G_0}(z) + n - |W| \geq d_G(z)$。

所以不等式成立。

現在假設對所有 $y \in V(G), \quad d_G(y) = d_H(y)$，於是 $|E(G)| = |E(H)|$，所以

$|E(H_0)| = |E(G_0)|$，由歸納假設 G_0 是完全 $r - 1$ 分圖。

又因 $|V - W| - |W| \geq \sum_{u \in V - W} d_G(u) = |V - W| - |W| + |E(G[V - W])| \quad (G = H)$。

$G[V - W]$ 沒有邊，所以 G 爲完全 r 分圖。 Q.E.D.

(註)
1. Turán 的證明方法

首先，因 G 中不含 K_{r+1}，我們可以適當地再加入邊，使得 G 中有 K_r。令 $V(K_r) = W, \quad V(G) \setminus W = U$，所以

$|E(G)| \leq \binom{r}{2} + (r - 1)(n - r) + |E(G[U])|$

$\leq \binom{r}{2} + (r - 1)(n - r) + |E(T_r(n - r))|$

$\leq |E(T_r(n))|$

唯一的部份與上述類似。
2. Zykov's Proof.

令 \(v_i \) 为 \(G \) 中度数最大的点之一，\(W = N(v_i) \)。令 \(G_i \) 为由 \(G \) 中的 \(G[W] \) 由\(T_{\alpha}'(|W|) \) 取代的图。考虑 \(V(G_i) \setminus W \)；假如它是空集合，stop，不然的话，令 \(v_2 \in V(G_i) \setminus W \)，去掉与 \(v_2 \) 相邻的边之后加入 \(v_2 x, x \in W \)；于是得到新图 \(G_2 \)，
\[
|E(G_2)| \geq |E(G)| \geq |E(G)|
\]
而且 \(G_t, G_2 \) 都不包含 \(K_{r+1} \)。

继续上述的步骤直到 \(V(G_t) \setminus W \) 中的所有点均与 \(W \) 的所有点相邻为止，则所得到的图与完全多分图；这个时候如果它不是 \(T_r(n) \)，则可以知道它的边数仍小于 \(T_r(n) \)，所以 \(|E(G)| \leq |E(T_r(n))| \)。

3. 上面所提到的换边概念：去掉 \(v_2 \) 相邻的边，加入所有与 \(N(v_i) \) 相邻的边，称为是"把 \(v_2 \) 对称化到 \(v_1 \) （Symmetrization of \(v_2 \) to \(v_1 \) "。完成之后，\(v_1 \) 与 \(v_2 \) 对称（有相同的邻域）。在 \(v_1 \neq v_2 \) 的情况下，上述的换边图的边数不会减少，而且若是原图不含 \(K_{r+1} \)，换边之后的图也不含 \(K_{r+1} \)。

Problem. \(ex(n;K_{r+1} - e) = ? \)

§2. \(ex(n;K_{s,t}) \)

把不含完全图的研究推广至不含完全二分图并没有想到在那么顺利，截至目前为止，仍然有少数的课题等待解决，例如极图的长像就没有什么像 Turán 图那么简单地明确定义。以下我们先介绍不含 \(K_{s,t} \) 的二分图 \(G_2(m,n) \)。与 \(n \) 分别是第一和第二部分点集 (Partite set) 的大小。同时不出现的 \(K_{s,t} \) 也定是有 \(s \) 個點來自第一部份，\(t \) 個點来自第二部份。

Zarankiewicz Problem

在所有的 \(G_2(m,n) \) 中，\(m \geq s, n \geq t \)。不含 \(K_{s,t} \) 的图最多有几个边？

例. 当 \(m = 7 \)，\(n = 7 \) 时，不含 \(K_{2,2} \) 的图最多有 21 边。（？）

为了便于表示，以下就用 \(z(m,n;s,t) \) 来代表 Z 问题的最大值，因此 \(z(7,7;2,2) = 21 \)，接下来我们工作是找 \(z(m,n;s,t) \) 的上界。
引理 2.1. 令 m, n, s, t, k, r 分別為非負整數滿足下列條件：$2 \leq s \leq m$, $2 \leq t \leq n$, $0 \leq r \leq m$, 以及不含 $K_{s,t}$ 的圖 $G_2(m, n)$ 它有 $z = km + r$ 邊，再令 $z = ky'$(y 可以不是整數。) 則

$$m \binom{y}{t} \leq (m-r) \binom{k}{t} + r \binom{k+1}{t} \leq (s-1) \binom{n}{t}.$$ \hspace{1cm} \text{（*）}

証明.

令 $(V_1, V_2) = G_2(m, n)。$ 定義 H 爲一個二分圖 $(V_1, \left\{ \begin{array}{c} V_2 \\ t \end{array} \right\})$，令 $x \sim_H A$ 若且唯若 $x \sim_G a, \forall a \in A$。因此 $e(H) = |E(H)| = \sum_{x \in V_1} \binom{d_G(x)}{t}$. 現在考慮任意的集合

$$B \in \left\{ \begin{array}{c} V_2 \\ t \end{array} \right\}, B \text{ 至少與 (s-1) 個 } V_1 \text{ 中的點相連，否則就會有 } K_{s,t}, \text{ 所以 }$$

$$e(H) \leq (s-1) \binom{n}{t}, \text{ 於是 } \sum_{x \in V_1} \binom{d_G(x)}{t} \leq (s-1) \binom{n}{t}.$$

因為 G 是二分圖，所以 $\sum_{x \in V_1} d_G(x) = z = mk + r = my'$. 再來看函數 $f(x) = \left(\begin{array}{c} x \\ t \end{array} \right)$,

$$\left(\begin{array}{c} x \\ t \end{array} \right) = \frac{x^t}{t!} \leq \frac{x(x-1)(x-2) \ldots (x-t+1)}{t!},$$

它是一個凸函數(convex)，所以

$$m \binom{y}{t} \leq (m-r) \binom{k}{t} + r \binom{k+1}{t} \leq \sum_{x \in V_1} \binom{d_G(x)}{t} \leq (s-1) \binom{n}{t} \text{。}$$ \hspace{1cm} \text{Q.E.D.}

（ 註）(i) 因為 $\sum_{x \in V_1} d_G(x) = mk + r$, 所以最平均的度數來分配為 $(m-r)k + r(k+1)$。

(ii) $\left(\begin{array}{c} 10 \\ 3 \end{array} \right) + \left(\begin{array}{c} 7 \\ 3 \end{array} \right) + \left(\begin{array}{c} 9 \\ 3 \end{array} \right) + \left(\begin{array}{c} 8 \\ 3 \end{array} \right) > 2 \left(\begin{array}{c} 8.5 \\ 3 \end{array} \right)$。

接下來證明上界。

定理 2.2. $z(m, n; s, t) \leq (s-1)^t(n-t+1)m^{\frac{1}{t}} + (t-1)m^\frac{1}{t}$。

証明. 令 $G = C_2(m, n)$ 爲不含 $K_{s,t}$ 的極圖，同時 $e(G) = z(m, n; s, t) = my'$. 於是
$y \leq n$，所以(※)推得

$$(y-t+1)^{t} \leq (s-1)(n-t+1)^{t} m^{-1} \Rightarrow y-t+1 \leq \frac{1}{s-1}^{t} (n-t+1)m^{\frac{1}{s-1}}$$

所以 $z(m,n;s,t) = my \leq (s-1)^{t} (n-t+1)^{t} m^{\frac{1}{s-1}} + (t-1)m$。 Q.E.D.

推論 2.3. $z(n,n;s,2) \leq \frac{n}{2} \left[1 + (4(s-1)(n-1)+1) \right]^{\frac{1}{2}}$。

證明. 由(※)，$\frac{y}{2} \leq (s-1)\left(\frac{n}{2}\right)$，（註： $z(n,n;s,2) = ny$。）

所以 $\frac{n}{2}(y-1) \leq (s-1)n(n-1)$，

$$y^{2} - y - (s-1)(n-1) \leq 0$$

$$y \leq \frac{1 + [1 + 4(s-1)(n-1)]^{\frac{1}{2}}}{2}$$，推論得證。 Q.E.D.

推論 2.4. (Reiman, 1958)

$$z(n,n;2,2) \leq \frac{n}{2} \left[1 + (4(n-3)^{\frac{1}{2}} \right]$$，而且當 $n = q^{2} + q + 1$，q 爲質數次方數時，等式成立。

證明. 第一部份的證明很明顯，我們證明第二部份(等式成立)。

當 q 爲質數次方數時，n 階投影平面存在(?)，所以存在一個設計(X, B)，

$|X| = q^{2} + q + 1$。令 $V_1 = X$，$V_2 = B$，而且 V_1 中的一點 x，與 V_2 中的一點 B

有邊相連，若且唯若 $x \in B$，所得的圖也可以用 $G_{X,B}$ 表示。由於投影平面中，任

兩條線(B 中的兩個元)恰好交於一點(X 中的元)，而且任兩點(X 中的元)

也恰好在兩線上(B 中的元)，所以 (V_1, V_2) 中不含 $K_{2,2}$。

現在 (V_1, V_2) 中有 $(q + 1)(q^{2} + q + 1)$ 個邊(每邊有 $q + 1$ 個邊)。由 $q^{2} + q + 1 = n$，

所以 $q = \frac{-1 + \sqrt{1 - 4(q^n)}}{2} = \frac{1}{2} \left[1 + (4n-3)^{\frac{1}{2}} \right]$，因此

$$z(n,n;2,2) \geq \frac{n}{2} \left[1 + (4n-3)^{\frac{1}{2}} \right]$$，推論得證。 Q.E.D.

我們回頭來看 $ex(n,K_{s,t})$。

定理 2.5. $ex(n,K_{s,t}) \leq \frac{1}{2} (s-1)^{t} n^{\frac{1}{2}} + \frac{1}{2} (t-1)n$。
證明. 首先證明 \(z(n,n;s,t) \leq (s-1)^t n^{\frac{1}{t} - \frac{1}{2}} + (t-1)n \)。這可以由定理 2.2 直接推得（因 \(n \geq n-t+1 \)）。

令 \(V(G) = \{x_1, x_2, \ldots, x_n\} \)，\(V_1 = \{x'_1, x'_2, \ldots, x'_n\} \) 及 \(V_2 = \{x''_1, x''_2, \ldots, x''_n\} \)。利用 \(G \) 我們可以定義一個二分圖 \(H = (V_1, V_2) \)，其中 \(x'_i \sim_H x''_j \) 若且唯若 \(x_i \sim_G x_j \)。於 \(G \) 中不含 \(K_{s,t} \)，所以 \(H \) 中也不含 \(K_{s,t} \)，因此

\[
e(H) \geq 2ex(n, K_{s,t}) \quad (？) \text{定理得證。} \quad \text{Q.E.D.}
\]

推論 2.6. \(ex(n, C_4) \leq \frac{n}{4} (1 + \sqrt{4n-3}) \)。

推論 2.7. \(ex(n, C_4) = \frac{n}{4} (1 + \sqrt{4n-3}) \)；\(n = q^2 + q + 1 \)，其中 \(q \) 爲質方數。

問題. 當 \(n \) 不是上述推論的型式時，等式仍然成立嗎？

定理 2.8. (Furedi)

當 \(1 \leq t \leq s \leq m \) 時，\(z(m,n;s,t) \leq (s-t+1)^t nm^{\frac{1}{t} - \frac{1}{2}} + tn + tm^{\frac{2}{t} - \frac{1}{2}} \)。

Conjecture

(1) \(z(n,n;t,t) = (c_t + o(1)) n^{\frac{2}{t} - \frac{1}{t}}, \quad c_t = 1 \)。

(2) \(ex(n, K_{t,t}) = \frac{1}{2} (c_t + o(1)) n^{\frac{2}{t} - \frac{1}{t}}, \quad c_t = 1 \)。

（註）當 \(t = 3 \) 時，結果與推論 2.4 及 2.7 相似。（Brown, 1966）。

相近於找極圖的概念，我們可以考慮一個圖 \(G \) 它本身不含任何的子圖 \(H \)，但只要再加入任意的一邊，就會出現 \(H \)，這樣的圖 \(G \) 一般稱它為 \(H \)－飽和（\(H \)－Saturated）圖。

例. \(C_5 \) 爲一個 \(C_4 \)－飽和圖。

例. \(K_{3,3} \) 爲一個 \(C_3 \)－飽和圖。

顯然一個極圖可以把它當成是具有最多邊的飽和圖。為了解答 Zarankiewicz 問題，我們介紹飽和的二分圖，同時集中精神來看當 \(H \) 爲 \(K_{2,2} \)，

亦即是 \(C_4 \) 的情形。

命題 2.9. 在 \(K_{m,n} \) 中一個 \(C_4 \)－飽和的二分子圖 \(H \) 最少有 \(m + n - 1 \) 個邊。
證明. 如果\(e(H) \leq m + n - 1 \)，則\(H \) 爲不連通圖，因此至少可以在加入一邊仍然不
含有\(C_4 \)，此為矛盾。 Q.E.D.

命題 2.10. 在\(K_{m,n} \)中存在一個具有\(m + n - 1 \)邊的\(C_4 \)－飽和子圖。

證明. 令\(G = G_{X,B} \) ，其中\((X,B)\) 爲\(\lambda = 1 \)的 2-設計(2- design) ，\(|X| = n \) ，
\(B = \{X, \{x\}, \ldots, \{x\}\} \) ，\(|B| = m \) ，\(X \) 是一個具有\(n \)個元素的集合，而且\(x \in X \)。則
\(e(G) = m + n - 1 \)，而且\(G \) 不含任何\(C_4 \) 爲子圖，亦即\(G \) 爲\(C_4 \)－free。 Q.E.D.

（ 註 ）\(G_{X,B} = (X,B) \) ，定義方式與推論 2.4 相同。

究竟怎樣的\((X,B) \)可以定義出最多邊的\(C_4 \)－飽和的二分圖呢？當然是在
\(m , n \) 當固定的情況下討論才有意義。以下的定理提供一個相當不錯的估計。

定理 2.11. 令\((X,B)\) 爲\(\lambda = 1 \)的設計(2- design) ，\(K = \{\{B \}| \ B \in B\} \) ，且
\(B = \{B_1, B_2, \ldots, B_n\} \)。假如\(|X| = m \) ，\(K = \{k, k + 1\} \)且滿足
\(\frac{m}{2} - \sum_{i=1}^{n} \left(\frac{|B_i|}{2} \right) < k \) ，

則\(G_{X,B} \) 是\(K_{m,n} \)中具有最多邊的\(C_4 \)－飽和二分子圖。

證明. 由\(G_{X,B} \) 的定義，\(e(G_{X,B}) = \sum_{i=1}^{n} |B_i| \) 。假設存在有另一個\(G_{X,A} \) ，
\(A = \{A_1, A_2, \ldots, A_n\} \) ，滿足\(\sum_{i=1}^{n} |A_i| > \sum_{i=1}^{n} |B_i| \)。

令\(|A_i| = y_i \) ，\(|B_i| = x_i \) ，\(d_i = y_i - x_i \) ，以及\(d_i^* = \left(\frac{y_i}{2} \right) - \left(\frac{x_i}{2} \right) \) ，\(i = 1, 2, \ldots, n \)。

於是
\[
\sum_{i=1}^{n} d_i = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i > 0
\]

同時
\[
d_i^* = \left(\frac{y_i}{2} \right) - \left(\frac{x_i}{2} \right) = \frac{y_i(y_i - 1)}{2} - \frac{x_i(x_i - 1)}{2} = \frac{y_i^2 - y_i + x_i - x_i^2}{2} = \frac{(y_i - x_i)(y_i + x_i - 1)}{2}
\]
\[
= (y_i - x_i)x_i + \frac{(y_i - x_i)(y_i - x_i - 1)}{2} \geq d_i x_i \geq d_i k \ (x_i \geq k) \]

所以
\[
\frac{m}{2} - \sum_{i=1}^{n} \left(\frac{|B_i|}{2} \right) = \frac{m}{2} - \sum_{i=1}^{n} \left(\frac{y_i}{2} - d_i^* \right) = \frac{m}{2} - \sum_{i=1}^{n} \left(\frac{y_i}{2} \right) + \sum_{i=1}^{n} d_i^*
\]

44
$$\geq \binom{m}{2} - \sum_{i=1}^{n} \binom{y_i}{2} + \sum_{i=1}^{n} d_i k \quad (\binom{m}{2} \geq \sum_{i=1}^{n} \binom{y_i}{2})$$

每一邊最多出現一次。)

$$\geq \sum_{i=1}^{n} d_i k \quad (\sum_{i=1}^{n} d_i > 0)$$

$$\geq k \quad 这與假設矛盾，定理得證。$$

Q.E.D.

問題. 在 $G_{0, 12}$ 中是否存在一個具有 30 邊的 C_4 - 飽和子圖？最多邊的飽和子圖長像如何？它有多少邊？

問題(*). $z(m, n, 2, 2) =$? (Explicit form!)

§3. ex(n ; $K_{r+1(t)}$)

這節我們探討：要避開的圖為平衡完全多分圖的情況。每部分有 t 點的完全 $r+1$ 分圖，用 $K_{r+1(t)}$ 來表示，所以當 $r=1$ 時，此圖為平衡完全二分圖，而 $t=1$

的情況就是完全圖 K_{r+1}。

首先，我們觀察 $T_r(n)$ 中有多少邊。如果 $n=qr$，則

$$e(T_r(n)) = \binom{n}{2} - \frac{rq(q-1)}{2} = \frac{n}{2} - \frac{rq(rq-r)}{2r} \geq \frac{n}{2} - \frac{1}{r} \left(\frac{n}{2} \right)$$

所以，$T_r(n)$ 基本上至少有 $(1 - \frac{1}{r}) \binom{n}{2}$ 個邊；而當 $r > 1$ 時，一個具有 $(1 - \frac{1}{r}) \binom{n}{2}$ 邊的圖，不一定包含子圖 K_{r+1}；那麼究竟要多少邊才夠呢？

引理 3.1. 給任何一個固定的正數 ε，則在 n 足夠大時，每一個具有 n 點圖 G，只要 $\delta(G) \geq \varepsilon n$，則 G 中必定包含 $K_{\varepsilon t}$，其中 $t \geq \varepsilon \log n$ (log n 以 e 爲底)。

證明. 因為 $\delta(G) \geq \varepsilon n$，每個 G 中的點 x 至少可以和 $\binom{\varepsilon n}{t}$ 個不同 t-子集 (t-subset) 的所有 t 個點相鄰。令 $t = \lceil \varepsilon \log n \rceil$，所以

$$\frac{t \binom{n}{t}}{\binom{\varepsilon n}{t}} = \frac{t \cdot n(n-1) \cdots (n-t+1)}{\binom{\varepsilon n}{t} \cdot (\varepsilon n - 1) \cdots (\varepsilon n - t + 1)} = \frac{t}{\varepsilon n} \cdot \frac{n(n-1) \cdots (n-t+1)}{n(n-1) \cdots (n-t+1)} \leq t e^{-t} \left(1 - \frac{1}{\varepsilon n} \right)^{-t}$$

$$< \frac{2t}{\varepsilon n} e^{-t} \left(1 - \frac{1}{\varepsilon n} \right)^{-t} < \frac{2t}{\varepsilon n} (\log \frac{1}{\varepsilon}) \log n \leq \frac{2t}{\varepsilon n} (\log \frac{1}{\varepsilon})$$

45
因為 \(\lim_{\varepsilon \to 0} (\log_2 \varepsilon) = 0 \)，所以當 \(n \) 夠大時，上式 <1，也就是
\[
\left(\frac{n}{t}\right) \times 2^n < 1.
\]

由於 \(n \left(\frac{\varepsilon n}{t}\right) > t \left(\frac{n}{t}\right) \)，所以存在 \(t \) 個點，他們全部連接到另外的 \(t \) 個點，

亦即 \(G \supseteq K_{r,t} \)。 Q.E.D.

以下的定理為一般的形式。(引理為 \(r=1 \) 的特例。)

定理 3.2. (Erdős 及 Stone, 1946)

令 \(n \geq 1, \varepsilon > 0 \) 則存在一個正整數 \(n_0 = n_0(r, \varepsilon) \) 滿足以下的性質：

當 \(|V(G)| = n \geq n_0(n \ 夠大) \) 及 \(\delta(G) \geq (1 - \frac{1}{r} + \varepsilon)n \) 時，\(G \supseteq K_{r+1(t)} \) ，其中

\[
t \geq \frac{\varepsilon \log n}{2^{r-1}(r-1)!}.
\]

証明. 對 \(r \) 归納，顯然 \(r=1 \) 時，由引理 3.1 得知敘述成立。現在假設 \(r \geq 2 \) ，\(G \) 爲

\(n \) 點圖同時 \(\delta(G) \geq (1 - \frac{1}{r} + \varepsilon)n \)。而且對於 \(r' < r \) ，敘述為真(歸納假設)。由於

\[
\delta(G) \geq (1 - \frac{1}{r} + \varepsilon)n > (1 - \frac{1}{r})n = (1 - \frac{1}{r-1} + \frac{1}{r(r-1)})n
\]

所以 \(G \supseteq K_{r(t)} \), 其中

\[
t' \geq \frac{\varepsilon \log n}{2^{r-2}(r-2)!}, \text{ 所以 } t' = \left\lfloor d_r \log n \right\rfloor, \quad d_r = \frac{1}{2^{r-2} \cdot r!} \quad \text{(註：此時 } \varepsilon = \frac{1}{r(r-1)} \text{)}.
\]

現在，令 \(K_{r(t)} = K \subseteq G(K \ 爲子圖)，U \subseteq V(G) \setminus V(K) \)，同時滿足

\[
\forall x \in U, |x, K| \geq (1 - \frac{1}{t} + \frac{\varepsilon}{2})|K|. \quad \text{由於 } U, G-K \text{ 所含的邊數 } f \text{ 滿足下列不等式}
\]

\[
|K| \left((1 - \frac{1}{r} + \varepsilon)n - |K|\right) \leq f \leq |U||K| + (n - |U| - |K|)(1 - \frac{1}{r} + \frac{\varepsilon}{2})|K|; \text{ 所以}
\]

\[
\frac{r \varepsilon n}{2} \leq |U|(1 - \frac{r \varepsilon}{2}) + |K|(\frac{r \varepsilon}{2} - 1), \quad \text{因此在 } n \ 夠大時， } |U| \geq \frac{r \varepsilon n}{2} \geq \varepsilon n.
\]

令 \(t = \left\lfloor \frac{\varepsilon \log n}{2^{r-1}(r-1)!} \right\rfloor \)，則 \(t \geq \left\lfloor \frac{(r \varepsilon)}{2} t' \right\rfloor \)，於 \(|K| = rt' \)，所以

\[
\left((1 - \frac{1}{r} + \frac{\varepsilon}{2})|K|\right) = (r - 1)t' + \left(\frac{r \varepsilon}{2} t' \right) \geq (r - 1)t' + t' \text{，這表示 } U \text{ 中的每個元素 } x \text{ 至少與 } K \text{ 中的 } (r - 1)t' + t \text{ 個點相鄰，同時 } N_K(x) \supseteq K_{r(t)} = G' \text{ (註： } t' \geq t \text{)。現在，因} \]
中找到的 \(K_{r(t)} \) 有 \(\binom{t'}{t}^r \) 個。令 \(W \) 則所有在 \(U \) 中且與同一個 \(K_{r(t)} \) 相連之點所成的集合，於是以 \(|W| \geq \frac{|U|}{\binom{t'}{t}^r} \)。（每一點至少 cover 一個 \(K_{r(t)} \)。）

由直接計算 \(|W| \geq \frac{\binom{n}{t'}}{\binom{t'}{t}^r} \geq \frac{\binom{n}{t'}}{e^{t'}}, \) 但是 \(t' \geq \frac{t}{e} \) （Stirling 公式），

所以 \(|W| \geq \frac{\binom{n}{t'}}{e^{t'}} \geq \frac{\binom{nr}{t'}}{3^{t'}} \geq t'。\)（？自行證明）這表示用 \(W \cup V(G') \) 可以導出一個 \(K_{r+1(t)} \) 的子圖。

Q.E.D.

以下介紹的引理可以將最小度數的條件轉換成整個圖邊數的條件，放寬了已知圖的要求。

引理 3.3. 令 \(c, \varepsilon > 0 \)，則當 \(n > \frac{3}{\varepsilon} \) 時，點數為 \(n \)，邊數至少為 \((c+\varepsilon)\binom{n}{2} \) 的圖 \(G \) 滿足以下兩條件：

i. \(\delta(H) \geq c|V(H)| \)，

ii. \(|V(H)| \geq \frac{\varepsilon}{\varepsilon^2} n \)。

證明. (注) \(0 < \varepsilon < \varepsilon + c \leq 1 \)

利用反證法。假設我們找不到滿足上述兩條件的 \(H \)，於是存在一個遞減的子圖序列：\(G = G_n > G_{n-1} > \cdots > G_1, l = \left \lfloor \frac{1}{\varepsilon^2 n} \right \rfloor \)；這個序列滿足

(a) \(|V(G_j)| = j, n \geq j \geq l \)，(b) 於所有的 \(n \geq j > l \)，在 \(V(G_j) \setminus V(G_{j-1}) \) 中唯一的

元素 \(x \)，\(\deg_{G_j}(x) < cj \)。（如果序列不存在，則 \(H \) 已然存在。）

現在，我們計算 \(G_l \) 中的邊數：

\[
e(G_l) \geq (c+\varepsilon)\binom{n}{2} - \sum_{j=l+1}^{n} c_j = (c+\varepsilon)\binom{n}{2} - c\left[\binom{n+1}{2} - \binom{l+1}{2} \right]
\]
\[
= \varepsilon \left(\binom{n}{2} + \varepsilon \binom{l+1}{2} - cn \right) > \binom{n}{2} > \binom{l}{2}
\]

\[\left(l = \left\lfloor \frac{1}{\varepsilon^2 n} \right\rfloor, n > \frac{3}{\varepsilon} \right)\) 此為不可能，所以引理得證。 Q.E.D.

有了引理 3.3，我們可以得到比 Erdös-Stone 定理更強一點的 Bollobás-Erdős 定理；前者在西元 1946 年發表，後者則在西元 1973 年發表。(Erdös-Stone 定理一般也認為是奠定極限研究基礎的最重要成果。)

定理 3.4. 令 \(r \) 為正整數，\(\varepsilon > 0 \) 則必存在一個整數 \(n_0 = n_0(r, \varepsilon) \) 使得當一個 \(n \) 點圖 \(G \) 滿足

(i) \(n \geq n_0 \) 及

(ii) \(e(G) \geq (1 - \frac{1}{r} + \varepsilon) \binom{n}{2} \) 的條件時，\(G \) 包含 \(K_{r+1(t)} \) 爲子圖，\(t \geq \frac{\varepsilon \log n}{2^{r+1}(r-1)!} \)。(註：

\(t \) 令比給定的值大，但不是所有比此值大的數都可以當作 \(t \)。)

證明. 令 \(n > \frac{1}{\varepsilon} \)，則由引理 3.3，在 \(G \) 中有一子圖 \(H \)，\(|V(H)| = h \geq \frac{1}{\varepsilon^2} n \) 而且

\[\delta(H) \geq (1 - \frac{1}{r} + \frac{\varepsilon}{2}) h \quad (c = 1 - \frac{1}{r} + \frac{\varepsilon}{2}) \]。因此，當 \(h \) 足夠大時 (\(n \) 夠大)，\(H \) 有子圖

\[K_{r+1(t)}, \quad t \geq \frac{\varepsilon \log h}{2^{r+1}(r-1)!} = \frac{\varepsilon \log h^2}{2^{r+1}(r-1)!} \geq \frac{\varepsilon \log n^2}{2^{r+1}(r-1)!} \geq \frac{\varepsilon \log n}{2^{r+1}(r-1)!} \]

Q.E.D.

推論 3.5. \(ex(n; K_{r+1(t)}) = \left(1 - \frac{1}{r} \right) \binom{n}{2} + o(n^2). \)

(註)1. \(o(f) = g \) s.t. \(\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \)。（比起 \(f, g \) 的比例很小。）

2. 在 \(e(G) = (1 - \frac{1}{r}) \binom{n}{2} \) 時，\(G \) 可能不含 \(K_{r+1(t)} \); 所以由定理 3.4，上述推論成立。

推論 3.6. 令 \(F_1, F_2, \ldots, F_l \) 爲 \(l \) 個圖，同時 \(r + 1 = \min \{ \chi(F_i) | i = 1, 2, \ldots, l \} \) 則

\[ex(n; F_1, F_2, \ldots, F_l) = \left(1 - \frac{1}{r} \right) \binom{n}{2} + o(n^2). \]

證明. 由於任何 \(T_r(n) \) 的子圖都可以用 \(r \) 個顏色圖好點，所以
ex(n;F₁,F₂,...,Fᵢ) ≥ e(Tᵢ(n)) ≥ (1 - \frac{1}{r})(\frac{n}{2}) + o(n^2) \).

另一方面，因極有某極Fᵢ是Kᵢ₊₁(ᵢ)的子圖對某個i，所以

\[ex(n;F₁,F₂,...,Fᵢ) ≤ ex(n;Fᵢ) ≤ ex(n;Kᵢ₊₁(ᵢ)) = (1 - \frac{1}{r})(\frac{n}{2}) + o(n^2) \]. Q.E.D.

(註)我們可以定義一個n點圖的密度(Density) \(α(G) = \frac{e(G)}{\binom{n}{2}} \)，於是不含Kᵢ₊₁(ᵢ)

\((r > 1)\)的極圖G，它的密度是\((1 - \frac{1}{r})\). (n足夠大。)

問題．The upper density of an infinite graph G is the supremum of the densities of arbitrarily large finite subgraphs of G; i.e.

\[α(G) = \sup \{α(H)\|V(H)\| < +∞ \text{ and } |V(H)| \text{ is arbitrarily large}\}. \text{ Prove that} \]

\[α(G) = 1 - \frac{1}{r} \text{ or } 0 \text{ for some positive integer.} \]

§4. 蘭西理論（Ramsey Theory）

蘭西理論自從1930由蘭西定理開始在很多方面都有非常大的影響力，在圖論方面能自成一個重要專題絕對不是偶然的事。一方面，它比Dirichlet所發現的鴿籠原理更強，另一方面它與極圖的研究密不可分；所以在圖論中它是極重要的

一個研究課題。

我們都知道，所謂的鴿籠原理是一種"量"的要求，當總數被分割成數部分之

後，必然有一部分的量比平均值大一些，所以鴿籠原理也可以想成是平均數原

理。然而，蘭西理論的概念比較強，除了"量"的要求，也加上結構上的要求。例

如，我們用Kₙ(ᵢ)代表以N為點集合的無窮完全圖，然後再把Kₙ(ᵢ)的所有邊上塗紅

色或藍色，於是至少有一色出現無窮多次是鴿籠原理的產物；然而，是否能保證

"存在一個無窮集合M ⊆ N，它滿足M 中的任兩點皆用同色邊相連"，就需要蘭

西理論的概念來加以印證。

定義 4.1．

對於所有的正整數s,t ≥ 2，R(s,t)代表最小的正整數n，它滿足當Kₙ的邊以

紅，藍兩色著色之後，必定會出現一個紅色的K_s或一個藍色的K_t。（紅色K_s 代

表這個圖Kₙ中的每一個邊皆塗上紅色。）
定義 4.2.

當 $s = t$ 時，用 $R(s)$ 代表 $R(s,s)$，而當顏色不只兩色時，以 $R_k(s_1, s_2, \ldots, s_k)$ 代表在 k 色時，必存在第一色的 K_{s_1} 或第二色的 K_{s_2}, \ldots。於是 $R_k(s)$ 也自然代表在 $s_1 = s_2 = \cdots = s_k = s$ 的特殊情況。以下的性質，不難證明。

定理 4.3. 在 $s, t \geq 1$ 時，$R(s,t) < + \infty$，而當 $s, t > 2$ 時，則

(i) $R(s,t) \leq R(s-1,t) + R(s,t-1)$ 及

(ii) $R(s,t) \leq \binom{s+t-2}{s-1}$。

（註）當 $R(s-1,t)$ 及 $R(s,t-1)$ 都是偶數時，(i) 的等式不成立。

推論 4.4. $R(s) \leq \frac{2^{s-2}}{\sqrt{s}}$。

證明. 由 (ii)，$R(s) \leq \binom{2s-2}{s-1} = \frac{(2s-2)(2s-3)\cdots(2s-s)}{(s-1)!} = \frac{(2s-2)!}{(s-1)!(s-1)!} = \frac{(2s-3)(2s-5)\cdots3\cdot1}{(s-1)!} \cdot 2^{s-1} \leq \frac{2^{s-1}}{\sqrt{s}} \cdot 2^{s-1} = \frac{2^{2s-2}}{\sqrt{s}}$ (歸納法)。Q.E.D

定理 4.5. （Thomason, 1988）

這個定理離前面推論的獲得至少 50 年，看起來進展不大，但是這卻是一個相當深入的結晶，同時也顯示蘭西數研究的難度。

從另一方向來看，要求 $R(s)$ 的下界更是不容易，除了直接的建構法之外，隨機的概念也扮演重要的角色。

定理 4.6. $R(s) \geq 2^{s/2}$。

證明. 令 n 爲不大於 $2^{s/2}$ 的最大整數，亦即 $n = \lceil 2^{s/2} \rceil$：現在隨機在 K_n 上的邊塗上紅色或藍色，這樣的塗法共有 $2^{\binom{n}{2}}$ 種。同時，固定某個 s 個點彼此都連上同
色邊的塗法為 \(2 \cdot \binom{2}{\frac{1}{2}}\)。因此，會出現同色 \(K_3\) 的塗法至多為

\[
2 \cdot \binom{2}{\frac{1}{2}} \cdot \frac{n}{s}.
\]

所以當 \(2^{\frac{1}{2}} > 2 \cdot \binom{2}{\frac{1}{2}} \cdot \frac{n}{s}\) 時，必存在一種著色法，他會產生同色的 \(K_3\)。我們現在來證明 \(2^{\frac{1}{2}} - \frac{n}{s}\)。

\[
\binom{n}{s} \cdot 2^{\frac{1}{2}} = \frac{n(n-1)\cdots(n-s+1)}{s!} \cdot 2^{\frac{n-s+1}{2}}
\]

\[
< \frac{2^{\frac{n}{2}} \cdot n^s}{2^{\frac{n}{2}}} < 1 \quad (\text{已知} \; n = \left\lfloor 2^{\frac{1}{2}} \right\rfloor)
\]

Q.E.D

上述的證明，說明了當 \(s\) 增大時，\(R(s)\) 的成長是以指數的形式成長，要找出 \(R(s)\) 的正確值也相對地越來越困難，目前只知道 \(R(3) = 6 \quad R(4) = 18\)。

接下來，我們討論着色的色數大於 2 的情況：同時我們也把一般圖的著色推廣成超圖的著色，為了便於討論，以下的邊都是：\(r - \text{subset}, \; r = 2\) 的情況為 \(K_n\) 的著色，而一般的形式以 \(X(r)\) 表示 \(X\) 的所有 \(r - \text{subset}\) 所成的集合，\(X(r)\) 也可寫成

\[
\binom{X}{r}, \quad X(r)\] 之中的點數即為 \(\left\lfloor \frac{|X|}{r} \right\rfloor\)。

定理 4.7. 令 \(1 < r < \min\{s, t\}\) 則 \(R^{(r)}(s, t) < +\infty\) 而

\[
R^{(r)}(s, t) \leq R^{(r-1)}(R^{(r)}(s-1, t) + R^{(r)}(s, t-1)) + 1.
\]

（\(R^{(r)}(s, t)\) 為超圖的蘭西數。）

證明.（對 \(s + t\) 及 \(r\) 作歸納）

由於 \(R^{(r)}(s, t) = R^{(r)}(t, s)\)， \(R^{(r)}(s, t) = R(s, t) \leq \left[R(s-1, t) + R(s, t-1)\right] + 1\)，而且當 \(r = s \leq t\) 時 \(R^{(r)}(s, t) = t\)，所以歸納法的起始值成立。現在，假設 \(R^{(r)}(s, t-1)\)， \(R^{(r)}(s-1, t)\) 均為有限值，且 \(R^{(r-1)}(R^{(r)}(s-1, t), R^{(r)}(s, t-1)) < +\infty\)。

令 \(X\) 為具有 \(R^{(r-1)}(R^{(r)}(s-1, t), R^{(r)}(s, t-1)) + 1\) 個元素的集合，\(\alpha\) 為 \(\binom{X}{r}\) 的一個塗色方法（任一個 \(r - \text{subset}\) 皆有一色，紅或藍）。現在，任選 \(r - 1\) 個元素 \(x \in X\)，令 \(Y = \{B \mid B \subseteq X \setminus \{x\}\} \text{且} |B| = r - 1\)，則由 \(\alpha\) 可以推得一個 \(\alpha'\)，它是 \(Y\) 的一個塗色方法：\(\alpha'(B) = \alpha(B \cup \{x\})\)。

於是，\(Y\) 中存在一個子集合 \(Z\)，它具有 \(R^{(r)}(s-1, t)\) 個點，而且 \(Z\) 中的任意 \(r - 1\) 個點所成的邊都是紅色邊，或是存在一個子集合 \(Z'\)，它具有 \(R^{(r)}(s, t-1)\) 個點，而

51
且 Z' 中的任意 $r-1$ 個點所成的邊都是藍色邊。不失一般性，令前者成立。再回頭看 X 的著色：如果 X 中有一子集合 T，具有 r 點，而且 T 中的任 r 個點均塗蓝色，定理得證；不然的話，有一子集合 S'，他的任意 $(s-1)-$ subset 均為紅色；現在看 $S' \cup \{x\}$ 則任意 $s-\text{subset}$ 均為紅色，所以定理得證。

Q.E.D

（注）當 $r = 2$ 時或具有 k 個顏色，$k > 2$，證明方法類似。

定理 4.8.

$$R_k^{(r)}(s_1, s_2, \ldots, s_k)$$

$$\leq R_k^{(r-1)}(R_k^{(r)}(s_1-1, s_2, \ldots, s_k) + R_k^{(r)}(s_1, s_2-1, \ldots, s_k) + \cdots + R_k^{(r)}(s_1, s_2, \ldots, s_k-1, s_k-1)) + 1$$

以下的結果是 Erdős 及 Szekeres 在這課題中重要的貢獻。在敘述定理之前，先介紹兩個定義。

定義 4.9.

平面上 2 維座標的點集合 S，如果 S 中任兩點的 x 座標都不相等，則 S 爲非退化的點集（Non-Degenerate）。

定義 4.10.

令 S 爲具有 k 個點的非退化點集合，

$$S = \{(x_i, y_i) | i \in \{1, 2, \ldots, k\}, x_1 < x_2 < \cdots < x_k\}$$

$$\frac{y_{i+1} - y_i}{x_{i+1} - x_i} \leq \frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_{i+1}}$$

$$i = 1, 2, \ldots, k-2，$$

成立時，則 S 稱為凸 k 集（Convex k-set），若是斜率越來越小，則 S 爲凹 k 集（Concave k-set）；前者也稱為是 $k-cup$，後者為 $k-cap$。

定理 4.11.（Erdős 及 Szekeres, 1935 及 1960）

對於任意的 $k, l \geq 2$，如果 S 爲具有 \binom{k + l - 4}{k - 2} + 1 點的非退化集合，則 S 必定包含一個 $k-cup$ 或是一個 $l-cap$。如果點數變少，則上面的敘述不一定成立。

證明. 令 $\phi(k, l) = \binom{k + l - 4}{k - 2}$。（對 $k + l$ 归納。）

由於任意兩點，只要 x 座標不一樣，它就形成一個 $2-cup$ 也是一個 $2-cap$，因此，當 $\min\{k, l\} = 2$ 時，$\phi(k, l) = 1$，假設成立。現在，假設在小的時侯成立，且令 S 爲具有 $\phi(k, l) + 1$ 點的非退化集合。

（用歸謬法證明）假設 S 中不含 $k-cup$ 也不含 $l-cap$。由於 $\phi(k-1, l) + 1 \leq \phi(k, l) + 1$，所以 S 必含有一個 $(k-1)-cup$ 或是一個 $(l-cap)。現在 S$ 不含 $l-cap$，因此 S 必含 $(k-1)-cup$。令 L 爲所有 $(k-1)-cup$ 的最後一點所成的
集合。於

$\mathcal{L} \subseteq \phi \mathcal{L}$，所以 $\mathcal{L} \setminus \phi \mathcal{L}$，這可以推得

$|\mathcal{L}| \geq \phi(k,l-1)+1$。因此，在 \mathcal{L} 中就一定包含一個 $(l-1)-cup$，$C = \{q_1, q_2, \ldots, q_{l-1}\}$，其中 $q_i = \{x'_i, y'_i\}$。而且 $q_i \Rightarrow q_{i+1}$ 的斜率不小于 $q_{i+1} \Rightarrow q_{i+2}$ 的斜率，

$i = 1, 2, \ldots, l-3$。由於 \mathcal{L} 是 $(k-1)-cup$ 最後一點所成的集合，所以 $q_1 = p_k$, p_{k-1} 爲某一 $(k-1)-cup$ $\{p_1, p_2, \ldots, p_{k-1}\}$ 的最後一點。現在看 $p_{k-2} \Rightarrow p_{k-1}$ 的斜率與

$p_{k-1} \Rightarrow q_k$ 的斜率，如果後者不小于前者，則 $\{p_1, p_2, \ldots, p_{k-1}, q_k\}$ 爲 $(k-1)-cup$；另外，如果後者小於前者，則 $\{p_{k-2}, p_{k-1} = q_1, q_2, \ldots, q_{l-1}\}$ 爲 $(l-1)-cap$；這與假設矛盾，第一部份得證。

接下來，我們利用遞迴的方式建構一個集合 $S_{k,l}$，$|S_{k,l}| = \phi(k,l)$，使得 $S_{k,l}$ 爲非退化集且 $S_{k,l}$ 不含 $k-cup$ 也不含 $l-cap$。

首先，當 $\min\{k,l\} = 2$，令 $S_{k,l} = \{(1,0)\}$。令 $Y = S_{k,l}$，$Z = S_{k,l-1}$ 極已建構好，也就是說 Y 與 Z 均為非退化集，Y 不含 $(k-1)-cup$ 及 $l-cap$；Z 不含 $k-cup$ 及 $(l-1)-cap$。 $(k,l \geq 3.)$

令 $Y = \{(i, y_i) | 1 \leq i \leq m = \phi(k,l-1)\}$，$Z = \{(i, z_i) | 1 \leq i \leq n = \phi(k,l-1)\}$，

$Y^{(c)} = \{(i, \varepsilon y_i) | 1 \leq i \leq m\}$ 及 $Z^{(c)} = \{(m+i, m+\varepsilon z_i) | 1 \leq i \leq n\}$。由觀察，只要 ε 夠小，則 $Y^{(c)}$ 中任兩點的連線會在 $Z^{(c)}$ 的下方，同時 $Z^{(c)}$ 中任兩點的連線會在 $Y^{(c)}$ 的上方。於是 $Y^{(c)} \cup Z^{(c)}$ 爲所求。 $(?)$ Q.E.D

（註）如下圖所示，如果 C 爲 $(k-1)-cup$，且 $C \subseteq Y^{(c)} \cup Z^{(c)}$，則 $|C \cap Z^{(c)}| \geq 2$，否則 $Y^{(c)}$ 包含一個 $(k-1)-cup$。 $\Rightarrow Y$ 包含一個 $(k-1)-cup$。 ）於

$C \subseteq Z^{(c)} \Rightarrow$。另一方面，如果 D 爲 $(l-1)-cup$，且 $D \subseteq Y^{(c)} \cup Z^{(c)}$，則

$|D \cap Y^{(c)}| \geq 2$，否則 $Z^{(c)}$ 包含一個 $(l-1)-cap$。於是 $D \subseteq Y^{(c)} \Rightarrow$。
推論 4.12.

在平面上，三點不共線的 \(\binom{2k-4}{k-2} + 1 \) 點中，必定可以找到 \(k \) 個點，它們可以連出一個凸 \(k \) 邊形。

猜測. (Erdös 及 Szekeres, 1935)

在平面上，三點不共線的 \(2^{k-2} + 1 \) 點中，必定可以找到 \(k \) 個點，它們可以連出一個凸邊形。

(註) \(k = 3, 4 \) 很容易。這是一個有潜力的研究專題，與幾何有極大的關聯。

接下來我們來看看原來 Ramsey 所提出的定理。

定理 4.13.

令 \(A \) 為一無窮集合，則把 \(\binom{A}{r} \) 的元素 \(k \) 著色之後，必定存在一個無窮集合 \(T \)，\(\binom{T}{r} \) 中的元素都塗上同一色 (同色的 \(\binom{T}{r} \))。

證明. 對 \(r \) 归納，\(r=1 \) 時命題顯然成立。現在令 \(r-1 \) 時成立 (\(r \geq 2 \))。令 \(\phi \) 為

\[
\binom{A}{r} \bigg| \binom{A}{s}
\]
的任意一個 \(k \) 著色，\(A = A_0, x \in A_0 \)。由 \(\phi \) 可以導出 (\(B_1 = A_0 \setminus \{x_1\} \))

\[
\binom{B_1}{r-1}
\]
的一個 \(k \) 著色 \(\phi' \)，其中 \(\forall S \in \binom{B_1}{r-1}, \phi'(S) = \phi(S \cup \{x_1\}), S \cup \{x_1\} \in \binom{A_0}{r} \)。由
歸納假設，在 B_1 中必存在一個無窮集合 A_1，它滿足 $\binom{A_1}{r-1}$ 的元素都塗上同一色 d_1，而且 $|A_1| = \infty$。再令 $x_2 \in A_1, B_2 = A_1 \setminus \{x_2\}$，而且 $\binom{B_2}{r-1}$ 的著色也是由 ϕ 推導出來，亦即，$\forall S \in \binom{B_2}{r-1}, \phi''(S) = \phi(S \cup \{x_2\})$。同理，由歸納假設，在 B_2 中必存在一個子集合 A_2，它滿足 $\binom{A_2}{r-1}$ 的元素都塗上同一色 d_2，而且 $|A_2| = \infty$。繼續這個步驟，我們可以得到一個無窮數列 $x_1, x_2, \ldots, x_n, \ldots$，其中 $B_i = A_{i-1} \setminus \{x_i\}$，而且 $\forall S \in \binom{B_i}{r-1}, \phi''(S) = \phi(S \cup \{x_i\})$。由構造的過程得知 $\binom{A_i}{r-1}$ 的元素都塗上同一色 d_i。由於，有 k 色，所以必定存在一種顏色 d，它出現在無窮多個 $\binom{A_i}{r-1}, i \in \mathbb{N}$。

令 A_1, A_2, \ldots 爲這樣的集合，於是 $A_i \supset A_i \supset A_i \supset \cdots$，推得集合 $T = \{x_1, x_2, \ldots\}$ 中的任意 r 個元素都塗上顏色 d，定理得證。Q.E.D

§5. 圖的蘭西理論(Ramsey Theory for Graph)

在上節，我們保證同色完全圖出現；於是，很自然地就可以保證同色的一般圖出現；只是，這個時後所需要的點數 n 就可以變得小一些。

定義 5.1. 令 H_1, H_2, \ldots, H_k 分別為 k 個不含孤立點的圖，則 $n = r(H_1, H_2, \ldots, H_k)$ 代表最小的正整數使得任意 K_n 的 k 著色，都必定存在同色的 $H_i,i \in \{1,2,\ldots,k\}$。

引理 5.2. $r(H_1, H_2, \ldots, H_k) \leq R(s_1, s_2, \ldots, s_k)$，其中 $s_i = |V(H_i)|, i = 1, 2, \ldots, k$。

引理 5.3. 令 H_i 爲定義於 $V(H_i)$ 上的 $\gamma - uniform$ 條圖，亦即每個邊都具有 γ 個點，$i = 1, 2, \ldots, k$，則 $r^{(\gamma)}(H_1, H_2, \ldots, H_k) \leq R^{(\gamma)}(s_1, s_2, \ldots, s_k)$，其中
\[s_i = |V(H_i)|, \ i = 1, 2, \ldots, k. \]

如果所有的 \(H_i \) 都是完全圖，則由定義 \(r(H_1, H_2, \ldots, H_k) = R(s_1, s_2, \ldots, s_k) \)；所以我們討論至少有一個不是完全圖的情況。

定理 5.4. 對於所有的 \(l \geq 1 \) 以及 \(p \geq 2 \)，\(r(lK_2, K_p) = 2l + p - 2 \)。

證明. 令 \(O_{p-2} \) 代表不含任何邊的 \(p - 2 \) 點圖，則顯然 \(K_{2l-1} \cup O_{p-2} \) 不含 \(lK_2 \)，而它的補圖也不含 \(K_p \)，所以必定存在一種著色方法，使得同色的 \(lK_2 \) 及同色的 \(K_{p-1} \) 皆不存在，因此 \(r(lK_2, K_p) \geq 2l + p - 2 \)。

現在，設 \(n = 2l + p - 2 \)，\(G \) 為不含 \(lK_2 \) 的 \(n \) 點圖，亦即 \(G \) 中可以找到的最大配對 (Maximum matching) 有 \(s \leq l-1 \) 邊；現在考慮 \(V(G) \setminus S \)，\(S \) 為以上最大配對所連接到的 \(2s \) 個點，顯然 \(V(G) \setminus S \) 為空圖，所以 \(G \) 中包含子圖 \(K_{n-2s} \)，但是 \(n - 2s \geq n - 2(l-1) = p \)，所以定理得證。

(註) 在兩種顏色的情況下，一般把一色當成 \(G \leq K_n \)，另一色為 \(\overline{G} \)。

定理 5.5. 令 \(s \geq t \geq 1 \)，則 \(r(sK_2, tK_2) = 2s + t - 1 \)。

證明. 不失一般性，令 \(s \geq t \)。由於 \(G = K_{2s-1} \cup O_{t-1} \) 不含子圖 \(sK_2 \) 而且 \(\overline{G} \) 也不含子圖 \(tK_2 \)，所以 \(r(sK_2, tK_2) \geq 2s + t - 1 \)。

要證明 \(r(sK_2, tK_2) \leq 2s + t - 1 \)，我們利用歸納法（對 \((s, t) \)）。當 \(t = 1 \) 時，由定理 5.4，\(r(sK_2, K_2) = 2s \) 所以不等式成立。現在，假設 \(t \geq 2 \)，

\[
 r((s-1)K_2, (t-1)K_2) \leq 2(s-1) + (t-1) - 1 = 2s + t - 4; \text{ 同時令 } n = 2s + t - 1, \text{ 而且 } G \text{ 為任意的 } n \text{ 點圖。}
\]

首先，如果 \(G = K_n \)，則 \(G \) 必然包含子圖 \(sK_2 \)；另一方面，如果 \(G = O_n \)，則 \(\overline{G} \) 包含子圖 \(tK_2 \)；所以，我們只需要討論另外的情形。當 \(G \neq K_n \)，

\(G \neq O_n \) 時，\(G \) 中一定存在三點 \(x, y, z \) 滿足 \(xy \in E(G) \)，但是 \(xz \notin E(G) \)。

考慮 \(G' = G - \{x, y, z\} \)。由於 \(G' \) 有 \(2s + t - 4 \) 點圖，所以，不是 \(G' \) 中有子圖 \((s-1)K_2 \) 就是 \(\overline{G} \) 中有子圖 \((t-1)K_2 \)。如果是前者成立，則 \(xy \cup (s-1)K_2 \) 為 \(sK_2 \)；而當後者成立時 \(xz \cup (t-1)K_2 \) 為 \(tK_2 \)，也就是說，不是 \(G \) 中有 \(sK_2 \)，就是 \(\overline{G} \) 中有
定理 5.6. 當 \(s \geq t \geq 1 \) 而且 \(s \geq 2 \) 時，\(r(sK_3, tK_2) = 3s + 2t \)。

證明. (≥) 令 \(G = K_{3s-1} \cup S_{2t-1} \)，\(S_{2t-1} \) 為 \(2t-1 \) 個邊的星圖(Star)。則 \(G \) 不含 \(sK_3 \)，
\(\overline{G} \) 不含 \(tK_3 \)。

(≤) 我們先證明 \(r(2K_3, K_3) \leq 8 \)。令 \(G \) 爲一個 8 點的圖，於是 \(G \) 或 \(\overline{G} \) 中必定包含三角形；當 \(\overline{G} \) 中有三角形時，已得證。所以，假設 \(\overline{G} \) 中不包含三角形，因此 \(G \) 中有三點 \(x, y, z \)，它們形成三角形。現在，考慮 \(G' = \{ x, y, z \} \)。如果 \(G' \) 中也有三角形，則 \(G \) 中有 \(2K_3 \)，不等式得證。由於 \(G' \) 也不含三角形，所以 \(G' \) 必定是 \(C_5 \)，同時，\(\{ x, y, z \} \) 中點與 \(C_5 \) 中的點有邊相連，而且是至少連續(\(C_5 \) 中的三點(？)；所
以，\(G \) 中一定可以找到兩個沒有共用點的三角形，\(2K_3 \)，不等式得證。

\(r(2K_3, 2K_3) \leq 10 \) 的證明方法類似，在此省略。

接著，我們證明 \(r(sK_3, K_3) \leq 3s + 2 \) ，\(s \geq 3 \)。由於

\[
r(G, H_1 \cup H_2) \leq \max \{ r(G, H_1) + |V(H_2)|, r(G, H_2) \} \tag{*}
\]

\[
r(sK_3, K_3) = r(K_3, sK_3) = r(K_3, (s-1)K_3 \cup K_3) \leq r(K_3, (s-1)K_3) + 3
\]

\[
= 3(s-1) + 3 = 3s + 2.
\]

有了上述的結果，我們可以利用歸納法來證明不等式成立 (對於 \(s, t \))。假設

\(r((s-1)K_3, (t-1)K_3) \leq 3(s-1) + 2(t-1) \) 令 \(n = 3s + 2t \)，同時 \(\varphi \) 為 \(K_n \) 的任意 2－著
色(紅與藍)。由於 \(n \geq 11 \)，所以 \(K_n \) 存有一個同色三角形，不失一般性，令此三角形為紅色，\(R_3 \)，於是考慮 \(K_n - R_3 \) ，此為 \(n-3 \) 個點的完全圖，它的著色方法來自

\(\varphi|K_n - R_3 \)，因為 \(n-3 \geq 3(s-1) + 2(t-1) \)，因此 \(K_n - R_3 \) 中必定有紅色的 \((s-1)K_3 \)
或是藍色的 \((t-1)K_3 \)。如果前者成立，則已存在紅色的 \(sK_3 \) ，不然的話，令 \(B_3 \)
為一藍色三角形，再看 \((R_3, B_3) \) 這個 \(K_{3,3} \) ，它的邊不是 5 邊以上是紅色，就是 5
邊以上是藍色，不論是那一種情況，都可以找到兩個不同色的三角形，它們共用
一點，令此圖為 \(B^* \) (\(|V(B^*)| = 5 \))。

57
現在，$K_n - B^*$中不是具有紅色的$(s-1)K_3$，就是藍色的$(t-1)K_3$，不管是那
一種情況都可以加入B^*中的三角形(紅色或藍色)來形成紅色sK_3或藍色tK_3，不
等式成立。

(註) (*) 令 $n = \max\{\ell(G, H_1) + |V(H_2)|, r(G, H_2)\}$，則 K_n 的任意 2 – 著色都
會有紅色的 G 或藍色的 H_2；有了前者，不等式已證；如果是後者成立，則考慮
$K_n - V(H_2)$，此時，藍色的 H_1 必存在，於是藍色的 $H_1 \cup H_2$ 存在。

接下來，我們探討 $p \geq q \geq 3$ 的一般情況。

定理 5.7. 令 $p \geq q \geq 2, s \geq t \geq 1, s \gg p, t_0 = \left\lfloor \frac{2r(K_p, K_q)}{q} \right\rfloor$ 以及
$C = r(t_0K_p, t_0K_q)$ 則 $ps + (q-1)t - 1 \leq r(sK_p, tK_q) \leq ps + (q-1)t + C$。

證明. 當 $G = K_{ps-1} \cup O_{(q-1)t-1}$ 時，G 不含 sK_p，而且 \overline{G} 也不含 tK_q，所以第一個
不等式得證。接著，我們利用歸納法來證明第二個不等式。顯然當 p, q 小的時
候成立(前面定理)。

由 (*)，$r(sK_p, tK_q) \leq (s-t)p + r(tK_p, tK_q)$。所以當 $t_0 \geq t$ 時，
$r(sK_p, tK_q) \leq (s-t)p + C \leq ps + (q-1)t + C$，不等式得證。現在，考慮 $t > t_0$，而
且假設在 $s \geq t \geq 2$ 時，$r((s-1)K_p, (t-1)K_q) \leq p(s-1) + (q-1)(t-1) + C$。令

$n = ps + (q-1)t + C$，同時 G 為 n 點圖(由紅色導出)，G 不包含 sK_p，\overline{G} (由藍色
導出)也不包含 tK_q。

我們只要證明在上述的情況下，必定存在一個紅色的 K_p 及一個藍色的 K_q，
它們有一共用的頂點即可。(因爲在 K_n 中扣掉 $p + q - 1$ 點，就一定存在紅色
$(s-1)K_p$ 或藍色 $(t-1)K_q$，再加入紅色 K_q 或藍色 K_q 即可導致矛盾。)

由於 $n \geq p(s-1) + (q-1)(t-1) + C$，而著色是選定不含紅色 sK_p 及藍色 tK_q 的
圖，我們可以進一步假設著色方式包含紅色 $(s-1)K_p$ 及藍色 $(t-1)K_q$。令 V_p 為紅
色 \((s - 1)K_p\) 的點集合，\(V_q\) 爲藍色 \((t - 1)K_q\) 的點集合，顯然 \(V_p \cap V_q = \phi\)。現在令

\[x \in V_q,\] 則 \(x\) 與 \(V_p\) 之間最多有 \(r(K_{p-1}, K_q)\) 一條紅色邊，不然就存在紅色的 \(K_q\) 交

藍色 \(K_q\)；同理最多有 \(r(K_{p-1}, K_q)\) 一條藍色邊。但是，

\[(s - 1)p \geq (t - 1)p \geq t_0 p \geq t_0 q \geq 2r(K_p, K_q) > r(K_{p-1}, K_q) + r(K_{p-1}, K_q) - 2\]，此為矛盾。所以紅色 \(K_q\) 與藍色 \(K_q\) 有共同點，定理得證。

最後，我們介紹如何利用極圖的概念來研究 \(r_k(H) (k - 藍色 H, \subseteq H)\)。

定理 5.8. 若是 \(k\) \(ex(n; H) < \left(\frac{n}{2} \right)\)，則 \(r_k(H) \leq n\)。

證明. 在 \(K_q\) 的 \(k - 藍色\) 中，必然存在一種顏色它出現的邊數大於 \(ex(n; H)\)，所以

這個顏色的 \(H\) 存在。

例. \(r_k(C_4) \leq k^2 + k + 2\)。（\(r(C_4, C_4) \leq 8\)）

因 \(ex(n; C_4) \leq \frac{n}{4}(1 + \sqrt{4n - 3})\)。而且 \(n = k^2 + k + 2\)，所以

\[
\begin{align*}
ex(n; C_4) & \leq k \frac{k^2 + k + 2}{4}(2k + 2) = \frac{(k^2 + k)(k^2 + 2k + 2)}{2} > \left(\frac{n}{2} \right)
\end{align*}
\]

問題. 求 \(r_k(C_4)\)。（目前最好的結果是由金芳蓉及 R. Graham 所證明的結果：當

\(k - 2\) 爲質數次方時，\(r_k(C_4) \geq k^2 - k + 2\)。）

問題. 求 \(r_k(P_t), t \geq 3\)。

§6. Ramsey Theory for Integers

一般都以為 Ramsey Theory 是圖論的一個專題，頂多知道它在經濟學上有些

應用；然而在整數集合方面的相關知識就不是那麼容易被聯想到，僅管它的研究

比圖論來得更早。以下，我們先介紹希伯特 (Hilbert) 的一個重要結果。

令 \(C\) 爲一個由自然數所形成的集合，亦即 \(C \subseteq N\)。我們稱 \(C\) 爲 \(\ell - cube\)，如

果存在 \(\ell + 1\) 個正整數 \(s_0, s_1, s_2, \cdots, s_\ell\)，滿足

\[s_1 + s_2 + \cdots + s_\ell < s_\ell+1, 1 \leq i < \ell - 1, \quad \text{且}\]

59
數列 \(s_1, s_2, \ldots, s_i \) 一般也稱為是超遞增數列 (Super-increasing)。

由於 \(\varepsilon_i \) 的選擇，\(C \) 可以看成是由 \(K' (K = \{0,1\}) \) 中的點所對應出來的值，或者把 \(C \) 看成由 \(K^f \to N \) 的一個函數，而且是 1-1 的函數，所以每個 \(C \) 都對應到 \(N \) 中的 \(2^f \) 個不同的自然數。

如果 \(C' = k + C \), \(k \in Z \)，則 \(C' \) 稱為是 \(C \) 的一個平移集合 (Translate)。為了便於了解，一個集合的分割 (partition) 可以看成是把該集合的元素著色 (不同於一般圖的著色)，而每一個顏色就對應到分割的一個子集合。這集合也稱為是同色的集合 (Monochromatic)。

以下的定理是 1892 年，由 Hilbert 所證明：\(N \) 為所有自然數所成的集合。

定理 6.1
令 \(N \) 中有一個 \(k \)-著色，則對於所有的 \(\ell \geq 1 \)，在這 \(k \)-著色所形成的 \(k \) 個集合中，必定有一集合它包含有無窮多個 \(\ell - cube \) 的平移。

証明：首先，我們對 \(\ell \) 做歸納，証明對於任意的 \(\ell \geq 1 \)，皆存在一個正整數

\[n = N(k, \ell) \]

使得 \([n] = \{1,2,\ldots,n\} \) 的任意 \(k \)-著色，都存在一個同色的 \(\ell - cube \)。

顯然，當 \(\ell = 1 \) 時，\(N(k,1) \) 可以選 \(k+1 \)，亦即令 \(N(k,1) = k+1 \)。

現在假設 \(n = N(k, \ell) \)，同時歸納假設成立：\([n] \) 的任意 \(k \)-著色，都存在一個同色的 \(\ell - cube \)，這也推得 \([n] \) 的平移也具有相類似的性質，即包含同色的 \(\ell - cube \) 之平移。

令 \(\overline{n} = N(k, \ell + 1) = kn^{\ell+1} \)。於是 \([n] = \bigcup_{j=1}^{kn} I_j \)，其中

\[I_j = \{(j-1)n+1, (j-1)n+2, \ldots, jn\} \]

所以由假設 \(I_j \) 的任意 \(k \)-著色都包含一個 \(\ell - cube \) 的平移；由觀察，不難看出 \(I_j \) 中不同的 \(\ell - cube \) 之平移最多只有 \((n-1)^{\ell} \) 個，所以在 \(kn \) 個區間中，至少有兩個區間 \(I_i \) 與 \(I_j (i < j) \)，它們具有相同顏色且為同一 \(\ell - cube \) 的平移，於是這兩個同色的 \(\ell - cube \) 之平移放在一起就是一個 \(\ell + 1 \)-cube (同色)：\((s_{i+1} = (j-i)n_0) \)

現在，由於同色的 \(\ell - cube \) 在 \([n] \) 中存在，我們可以把 \(N \) 分割成

\[\{1,2,\ldots,n\}, \{n+1,n+2,\ldots,2n\}, \ldots \]

於是每一集合在 \(N \) 的 \(k \)-著色之下自然也存在 \(k \)-著色，同時同色的 \(\ell - cube \) 存在，所以必定存在某一顏色，它有無窮多個同色的 \(\ell - cube \) 之平移；再加上每一區間不同的 \(\ell - cube \) 之平移個數是有限，所以必
定存在有無窮多個 $\ell - cube$ 的平移，它們是同的個 $\ell - cube$ 的平移。 Q.E.D.

上述的定理雖然長像有一點 Ramsey 的樣子，但是它對於 Ramsey 理論的發展並沒有多大的助益。倒是 Schur 在 1916 所得到的結果對這理論的推展有相當大的影響。

定理 6.2 對於任意的正整數 k，必定存在一個正整數 m 使得在$[m]$的任意 k-著色中，必定存在同色的三個數 x, y 與 z，同時 $x + y = z$。$(x, y$ 不一定 distinct)

證明：令 $R_k(3)$ 爲 $R(3,3,\ldots,3)$ $(k$ 個 3 的 Ramsey number)。由歸納法，我們不難

證明 $R_k(3) \leq \lfloor ek! \rfloor + 1$ （利用 $\lfloor ek! \rfloor = 1 + k[e(k-1)!]$）。所以 $R_k(3)$ 爲有限的正

整數。令 $m = R_k(3)$，ϕ 爲$[m]$的一個 k-著色。利用 ϕ，我們可以導出一個以$[n]$為

點集的完全圖，同時在這完全圖上導出一個邊著色 $\phi'(\{i, j\}) = \phi(\{i - j\})$，$1 \leq i \neq j \leq n$

所以 ϕ' 為 k 個顏色的邊著色。由 $R_k(3)$ 的定義，在完全圖中必定存在一個同色的

三角形 $\{i, j, h\}$，$1 \leq i < j < h \leq n$，同時 $\phi'(\{i, j\}) = \phi'(\{j, h\}) = \phi'(\{i, h\}) = \ell$。現在令

$x = h - j$，$y = j - i$，$z = h - i$，則 $\phi(x) = \phi(y) = \phi(z) = \ell$ 同時滿足 $x + y = z$。 Q.E.D.

這種同色元素間的性質，不久有了極為重要的推廣。

定理 6.3 （van der Waerden,1927）

任給兩個正整數 p, k；如果 n 夠大，則$[n]$的任一個 k-著色都存在一個同色且

至少有 p 項的等差數列。

這個定理的證明在 1963 經由 Haler 及 Jewett 以比較漂亮的形式表現，在此

省略。然而定理 4.3 提供了一個非常有挑戰性的問題：在 p, k 給定之後，使定理

成立最小的 $n = W(p, k)$ 為多少？例如，$W(2,2)=3$，$W(3,2)=9$，$W(4,2)=35$ 及

$W(5,2)=178$。其它的 p, k，$W(p,k)$ 所知不多。

有關等差子數列的研究，在 1975 有了重大的突破，Szemerédi 証明了 Erdős

的一個猜測而聲名大噪，最不可思議的是他當年使用的引理。最後他證明的結

果更有用，也更出名，一般也稱該引理為 Szemerédi’s Regularity Lemma。以下是

Szemerédi 所證明的结果。

定理 6.4 令 $A \subseteq N$ 且 $\lim_{N \to \infty} \sup_{N} |A \cap [N]|/N > 0$，則 A 必定包含一個任意長度的等

差數列。(註) $\lim_{N \to \infty} |A \cap [N]|/N$ 一般稱為是集合 A 的上密度(Upper Density)。

所以，Szemerédi 的結果證明了上密度大於 0 的自然數集，它裡面包含著要

多長就有多長的等差數列。設這個結果讓 Erdős 頒發了一千美元給他，而且這

也是有史以來 Erdős 發出去最高獎金的問題，想想，要猜這樣的問題並非容易，
也許上蒼也可頒發相同的獎金給 Erdős 才合理。

這個猜測的另一形式如下：

定理 6.5 令 \(A \) 為上密度大於 0 的自然數集合，則 \(\sum_{x \in A} \frac{1}{x} \) 發散。

由於 Szemerédi 的引理，證明相當複雜，在此僅就它的敘述加以說明。

定義 6.6 令 \(G = (V,E) \) 為一圖，\(X, Y \subseteq V \) 為互斥的兩個集合。我們用 \(e(X,Y) \) 代表在 \(G \) 中的 \(X \)-\(Y \) 邊，而 \(X-Y \) 邊的密度則定義為 \(d_e(X,Y) = \frac{e(X,Y)}{|X||Y|} \)。

定義 6.7 我們稱 \((X,Y) \) 為 \(\varepsilon \) -uniform 的集合時，如果任意兩個集合 \(X^* \subseteq X, Y^* \subseteq Y \) 滿足 \(|X^*| \geq \varepsilon |X| > 0 \) 且 \(|Y^*| \geq \varepsilon |Y| > 0 \) ，則 \(|d_e(X^*,Y^*) - d_e(X,Y)| < \varepsilon \)。

\(\varepsilon \) -uniform 的概念顯示出 \(X \) 與 \(Y \) 間邊的分佈相當均勻，這也是一種“Regular”現象。

定理 6.8 (Szemerédi’s Regularity Lemma)

For every \(\varepsilon > 0 \) and \(m \in \mathbb{N} \), there is a natural number \(M(\varepsilon, m) \) such that for every graph \(G = (V,E) \), there is a partition of \(V \), \(V = \bigcup_{i=1}^{k} C_i \) such that \(m \leq k \leq M \),

\[|C_1| \leq |C_2| \leq \cdots \leq |C_k| \leq |C_1| + 1 \]

and, with the exception of at most \(an^2 \) pairs, the pairs \((C_i, C_j) \) for \(i < j \), are \(\varepsilon \)-uniform.

上述引理的應用很多，以下是一個與樹圖有關的漂亮結果。

定理 6.9 (Komlós, Sárközy, and Szemerédi, 1993：猜測 Bolloba’s 1978)

任給 \(\varepsilon > 0 \) 及 \(\Delta \geq 1 \) ，則必定存在一個 \(n_0 = n_0(\varepsilon, \Delta) \) 使得點數 \(n \) (不小於 \(n_0 \)) 的圖 \(G \) ，只要 \(d(G) \geq \frac{(1+\varepsilon)n}{2} \)，則 \(G \) 必定包含任意最大度數為 \(\Delta \) 的 \(n \) 點樹圖。

問題 （猜測，Erdős 及 Sós, 1963）

令 \(G \) 為 \(n \) 點圖且 \(e(G) \geq \left\lfloor \frac{(k-1)n}{2} \right\rfloor + 1 \) ，則 \(G \) 包含每一個不同的 \(k \) 邊樹圖。
第七章 隨機圖(Random Graphs)

雖然隨機圖的研究是圖論中最年輕的一個分支，可是，在圖論中，它絕對是最重要的研究課題。除了用隨機圖的概念來解決一些重要問題之外，它本身的发展也是非常吸引人。值得提示的一點是它用的方法雖然是機率法則(Probabilistic Method)，可是它卻與機率論(Probability Theory)沒有太大的關係，甚至與一般所謂的隨機性質(Randomness)也沒有直接的關係。

隨機圖的研究一般相信是從 0 年代開始(1940s)，由 Erdős 及稍後一點的 Rényi 所開創，正式被介紹出來的年代大概是在 1959 年左右。從此，這個學問一日比一日熱門；研究的專書也一本接一本出現，其中以 Noga Alon 及 Joel H. Spencer 的隨機方法(The Probabilistic Method)最為完整。

在這一章中，我們就基本概念及幾個重要的結果分別加以介紹，所用到的統計或機率概念也分別加以說明：詳細的完整內容自然無法在這短短的數十頁中全部呈現出來。

§1. 基本概念

隨機圖的研究最常見的模式有三種：
1. $\mathcal{G}(n,M)$, (Model B)

令 $V = \{1,2,3,...,n\} = [n]$ 代表頂點的頂點， $N = \binom{n}{2}$，則 K_n 中具有 M 個邊的圖有 $\binom{N}{M}$ 個。在 $\mathcal{G}(n,M)$ 中，我們假設任一個 M 邊圖 G_M 出現的機率相等，所以某一個 M 邊(n 點)圖 H，它出現的機率為 $\binom{N}{M}^{-1}$，在機率論中的表示法為

$$P_M(G_M = H) = \binom{N}{M}^{-1}.$$

(註)這個模式的使用需要先知道出現的圖有多少邊。

2. $\mathcal{G}(n,p)$ or $\mathcal{G}(n,p(\text{邊}) = p), \ 0 \leq p \leq 1$。(Model A)

在這個模式中，每個邊(獨立)出現的機率為 p，然後把這些邊放在一起而形成一個圖 G_p (Edge-induced)。顯然，一共有 2^n 個圖，而一個 m 邊圖出現的機率為

$$p^m(1-p)^{N-m} = p^m q^{N-M} (q = 1-p)。$$

在機率論中的表示法為

$$P_p(G_p = H) = p^{e(H)} q^{N-e(H)}，$$ 其中 $e(H)$ 代表 H 的邊數。所以，出現 m 邊圖的機率
為 \(\binom{N}{m} p^m q^{N-m} \)。

（註）我們最常用的隨機圖模式為 \(G(n, 1/2) \)。

3. \(\tilde{G}_n \)

上述兩種模式都是以隨機圖來形成整個模式所需要的 Space，然而，這個模式就不一樣，它在空間中的元素為 "隨機圖序列" (Sequence of Random Graphs)：
\(G_0 \leq G_1 \leq G_2 \leq \cdots \leq G_N \)，其中 \(G_t \) 爲恰好有 \(t \) 邊的圖。為了方便起見，我們以
\(\tilde{G} = \{ G_t \}_0^N \) 來表示上述的序列。由於 \(\tilde{G} \) 可以看成是 \(N \) 中的三個排列，所以 \(\tilde{G} \) 有 \(N! \) 個；同時，若是用 \((e_1, e_2, \ldots, e_N) \) 代表 \(\tilde{G} \)，則 \(\{ e_t \} = E(G_t) - E(G_{t-1}) \)。現在，假設每一個 \(\tilde{G} \) 出現的機率相等，則每一序列表現的機率自然是 \((N!)^{-1} \)。

（註）\(\tilde{G} \) 可以把它想成是由空圖出發，逐漸把邊加入，一直到最後為完全圖，而一個邊成為第 \(t+1 \) 邊的機率為 \((N-t)^{-1} \)。

不管上面模式的那一個，我們都是考量當 \(n \to \infty \) 時所產生的現象，同時
\(M = M(n) \) 及 \(P = P(n) \) 皆是以 \(n \) 為變數的函數。所以，對於第一種模式而言，當 \(M \) 為定值，\((M(n) = c) \)，則 \(G(n, M) \) 中的元素 \(G_{n,M} \) 將會是 \(M \) 個邊的配對加入 \(n - 2M \) 個孤立點。（？）

從上面的觀察，我們不難發現隨機圖的研究精神：圖的一般性，例如在什麼情況下 (具有多少邊)，大部分的圖都是連通圖，或者是大部分圖的邊著色數都和最大度數相等。

隨機圖的概念在應用的領域也是非常重要，以下的兩個例子分別說明在物理及演算法的相關性。

例1.1 (熔點，Melting Points)

我們可以用 \(P_1 \times P_m \times P_n \) (Cartesian Product) 來代表一長方體 (想像成由 \(l \times m \times n \) 個分子用分子鍵 (邊) 連接起來的固體)。當連接的邊被破壞 (加熱) 之後，這個固體可能會散掉變成液體或氣體；顯然，要有足夠多的破壞鍵 (Break Bonds) 才會造成這種現象。以數學的模式來看，我們要尋找那介於中間的量 (Threshold)，在比較少時沒改變，而多了就產生預期的變化，這中間的量也就是所謂的熔點。對於隨機圖的概念而言，我們討論的是大概少了多少邊 (平均) 才會使得 \(P_1 \times P_m \times P_n \) 分成很多小的部分。
例1.2 (演算法分析，Analysis of Algorithms)

演算法的好壞常常是看計算所需要時間(Running Time)，而這時間常常被最差情況(Worst Cases)所誤導；也許，只不過是某些特殊狀況下造成它要用很多時間，而大部分的時候都還好；因此，討論“平均”發生的狀況也是非常重要；這平均值比較能用來評估演算法的優劣。
(註)這裡的評估方式是用機率分析(Probabilistic Analysis)，利用 Running time 的分佈(Distribution)來分析所預期的計算時間；當然，如何找到一個適當的機率分佈模式也是一個重要課題。

以下我們介紹機率方面的基本知識。

定義 1.3. (機率空間或機率模式，Probabilistic Space)

一個離散的機率空間是由一個可數(Countable)的集合 S 及定義在 S 的一個加權函數 f 所形成，同時滿足(i) $0 \leq f(x) \leq 1$ 及(ii) $\sum_{x \in S} f(x) = 1$。

定義 1.4. (機率)

令(S,f)為一機率空間，集合(事件，Event) $A \subseteq S$ 的機率， $P(A) = \sum_{x \in A} f(x)$。

定義 1.5. (獨立事件，Independent)

如果 $P(A \cap B) = P(A)P(B)$，則 A 與 B 彼此獨立。

定義 1.6. (隨機變數，Random Variable)

令(S,f)為一機率空間，則 $X:S \rightarrow R$ 爲一隨機變數；我們用 $X = k$ 來代表一個事件 $K = \{x \in S \mid X(x) = k\}$。

定義 1.7. (期望值，Expectation)

一個隨機變數 X 的期望值 $E(X) = \sum_{k} kP(X = k)$。

期望值的鴻鵠原理

令 X 爲機率空間的一個隨機變數，則在機率空間中必存在一個元素 y，$X(y) \geq E(X)$。

引理 1.8. (線性，Linear Property)

假如 X, X_1, X_2, \cdots, X_m 爲機率空間的隨機變數，同時 $X = \sum X_i$，則
\[E(X) = \sum_{i=1}^{m} E(X_i) \] 而且對於所有的 \(c \in R, E(cX) = cE(X) \)。

證明：由定義 1.7 可直接推得。

定義 1.9. (指示變數，Indicator Variables)

指示變數是一個由機率空間對應到 \{0,1\} 的函數。

(註) 在引理 1.8 中的 \(X_i \) 可以選指示變數。

定理 1.10. (Szele，1943)

在所有的 \(n \) 點競賽圖中必存在一個圈它至少有 \(\frac{n!}{2^{n-1}} \) 條相異的有向哈米爾頓路徑(Directed Hamiltonian Paths)。

證明：隨機圖建構一個競賽圖 \(T_n \) 它滿足(i,j)與(j,i)出現的機率相同。現在假設 \(X \)
是隨機變數，它代表在 \(T_n \) 中有向哈米爾頓路徑的個數。由於每一條哈米爾頓
路徑可以用一個指示變數代表，因此，\(X \) 可以寫成這些指示變數的和，於是，可能的哈米爾頓路徑有 \(n! \) 條；然而，每一條出現的機率為 \(\frac{1}{2^{n-1}} \)，所以 \(E(X) = \frac{n!}{2^{n-1}} \)。

由鴻德原理，在 \(n \) 點的所有競賽圖中，必存在一個，它具有至少 \(E(X) \) 條有向哈
米爾頓路徑。

上述的結果說明在競賽圖中不僅是存在一條有向哈米爾頓路徑(?)，同時某一
特殊的競賽圖含有很多條哈米爾頓路徑，究竟最多含有幾條呢？以下的結果是
由 Noga Alon 證明，我們在此省略它的證明。

定理 1.11. (Alon，1990)

在任意的 \(n \) 點競賽圖中最多有 \(\frac{n!}{(2 - o(1))^n} \) 條有向哈米爾頓路徑。

由定理 1.10，我們可以看出它的證明十分簡潔，結論離標準答桉也很接近。

定理 1.12. (Caro，1979；Wei，1981)

令 \(\alpha(G) \) 代表 \(G \) 的點獨立數(Independence Number)。則

\[\alpha(G) \geq \sum_{v \in \overline{V}(G)} \frac{1}{\deg(v)+1} \] 。

(證明) 一) 決策 Greedy Algorithm。選一個度數最小的點 \(v \)，然後把此點放入集合
S 中，再把 N[v] 從 \(V(G) \) 去掉，繼續選度數最小的一點，做相同的動作，一直到
沒有任何點剩下來。由於每次在 \(\deg(v)+1 \) 點中可以選到一點，所以
\[\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}. \]

（讀法二）利用隨機圖的概念。在 \(V(G) \) 上作隨機標示用 \(1, 2, \ldots, |V(G)| \) 爲點的標示
(labeling)。於是，對於任一點 \(v \) 及 \(N(v) \) 中點，\(v \) 標示值最小的機率為 \(\frac{1}{\deg(v) + 1} \)。

現在，不難看出把標示值小於相鄰點標示值的點集合起來就形成一個獨立集合

\[\sum_{v \in V(G)} \frac{1}{\deg(v) + 1} \]

顯然代表著找到獨立集合的期望值，所以

\[\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}. \]

（註）\(\alpha(G) \) 是一個非常困難決定的量化它所對應的 \(\omega(G) \) 也是一樣；這裡 \(\omega(H) \) 爲

H 中最大完全子圖的點數。

利用同樣的概念，我們也可以找到控制數(Domination Number)的上界。

定義 1.13. (控制集，Dominating Set)

令 \(S \subseteq V(G) \)。當 \(V(G) \) S 中的點和與 S 中的某些點相鄰時，我們稱 S 爲 G

的一個控制集。最小控制集的點數也稱為 G 的控制數，以 \(D(G) \) 表示。

令 G 爲 \(n \) 點圖，則 \(D(G) \leq \frac{n(1 + \ln(\delta(G) + 1))}{\delta(G) + 1} \)。

證明：隨機選一個集合 \(S \subseteq V(G) \) 使得點(獨立事件)出現在 S 中的機率 \(P \) 爲

\[\frac{\ln(\delta(G) + 1)}{\delta(G) + 1} \]

再令 \(T = \{ x \mid x \notin S \text{ 且 } N(x) \cap S = \phi \} \)。於是，\(S \cup T \) 爲 G 的一個控制集。

由假設，\(E(|S|) = np, E(|T|) \leq n(1 - p)^{\delta(G) + 1} \) \((N[v] \cap S = \phi)\)。由組合不等式

\[(1 - p)^{\delta(G) + 1} \leq e^{-p(\delta(G) + 1)}, \]

所以

\[E(|S|) \leq np + ne^{-p(\delta(G) + 1)} = np + ne^{-\ln(\delta(G) + 1)} = n(p + \frac{1}{\delta(G) + 1}). \]

這表示有一個

控制集它的元素個數最多為 \(\frac{n(1 + \ln(\delta(G) + 1))}{\delta(G) + 1} \)，定理得證。

問題 在定理 1.14 中 \(D(G) \) 的上界可以更小一些嗎？
§2. Almost All Graphs

隨著點數的增加，我們所使用的機率空間也隨之改變。為了方便起見，我們用第n個空間（nth space）來代表n點圖的機率分佈。為了要使每一個圖出現的機率相同，Model A 及 $p = \frac{1}{2}$ 為最自然的選擇。

定義 2.1 令q_n為在第n個空間“性質 Q”成立的機率。則當$\lim_{n \to \infty} q_n = 1$時，我們稱性質 Q 幾乎一定成立（Almost Always Holds），或者是幾乎所有的圖（Almost All Graphs）都具有性質 Q。

定理 2.2 (Gilbert, 1959)

當p為一常數且 $0 < p \leq 1$ 時，幾乎所有圖都是連接圖。証明：如果 G 為不連通圖，則必定存在一個集合 S，$S\subseteq V(G)$，$S=\phi$，亦即 S 與 $V(G)\setminus S$ 間沒有邊相連。現在，令這種現象存在的機率為q_n，則當$|S|=k$時，

$$q_n \leq \frac{1}{2} \sum_{k=1}^{n} \binom{n}{k} (1-p)^{n-k} \text{ (p 為有邊的機率)。}$$

由於$k=(n-k)$的性質相稱，所以

$$q_n \leq \sum_{k=1}^{n} \binom{n}{k} (1-p)^{n-k}.$$

又由於 $\binom{n}{k} < n^k$，當 $k \leq \frac{n}{2}$ 時，$(1-p)^{n-k} \leq (1-p)^{n/2}$。

所以 $q_n \leq \left(1-p \right)^{n/2} < \frac{x}{1-x}$，其中 $x = n(1-p)^{n/2}$。由於 $\lim_{n \to \infty} x = 0$ 所以

$$\lim_{n \to \infty} q_n = 0$$

定理得証。

Q.E.D

為了便於下面定理的証明，我們介紹以整數為值的隨機變數 (Integer-valued Random Variables)。主要的概選如下：令 p 代表邊出現的機率，G^p 代表因此而產生的圖。假如 X 為一隨機變數滿足當 G^p 具有性質 Q 時 $X=0$，則由 $E(X) \to 0$ 可以推得幾乎所有的圖 G^p 都會有性質 Q。這個概念可以由 Markov’s Inequality (馬可夫不等式) 推得，以下的引理僅對整數值隨機變數加以証明，其實值值隨機變數該不等式也成立。

引理 2.3 (Markov’s Inequality)

令 $p_k = P(X = k)$，k 為一非負整數。則 $P(X \leq k) \leq \frac{E(X)}{k}$，同時可以推得當 $E(X) \to 0$，則 $P(X = 0) \to 1$。

証明：$E(X) = \sum_{k \geq 0} kp_k \geq \sum_{k \geq t} kp_k \geq t \sum_{k \geq t} p_k = tP(X \geq t)$。
有了上述引理，要證明幾乎所有的 G^p 都是連通圖時，我們可以假設當 G 不
連通時 $X=1$ 而當 G 爲連通時 $X=0$，於是證明的方向就成為 $P(X=1) \to 0$ (p 為一正
的常數)。以下的結果比定理 2.2 更強。

定理 2.4 假如 p 爲一正常數，則幾乎所有的 G^p 都是直徑為 2 的圖。
証明：令 $X(G^p)$ 爲沒有共同鄰點的點對之個數，所以 X 爲一整數值隨機變數。
再令 $X_{i,j}$ 為指示變數(Indicator Variable) (它的值為 0 或 1)，而 $X_{i,j}=1$ 的充要條件
為兩點 V_i, V_j 沒有共同鄰點。換句話說，$X_{i,j}$ 只定義於點對{V_i, V_j}上，因此
$X=\sum X_{i,j}, E(X) = \sum E(X_{i,j})$。現在 $E(X_{i,j}) = P(X_{i,j}=1) = (1-p^2)^{n-2}$ (v_k 不同時
與 v_i, v_j 相鄰)，於是 $E(X) = \left(\frac{n}{2}\right)(1-p^2)^{n-2} \to 0$，所以幾乎所有的 G^p 都是直徑
為 2 的圖。
Q.E.D

$$
\lim_{n \to \infty} \left(\frac{n}{2}\right)(1-p^2)^{n-2} = \lim_{n \to \infty} \frac{n(n+1)}{2(1-p^2)^{2n-2}} = \lim_{n \to \infty} \frac{2n+1}{2\ln(1-p^2)(1)(1-p^2)^{2n}} = 0
$$

(註)直徑為 2 的圖必定都是連通圖。

由定理 2.4 我們看出來任意的圖 G^p 是連通圖的機率太大了，因為要維持連
通所以要的邊數遠小於 $\left(\frac{n}{2}\right)$，要維持是直徑 2 (Diameter 2) 也不會太大，因此，
我們可以探討 $P(p(n))$ 的大小；如果我能夠決定 $p(n)$，讓 $p(n)$ 越小越好，則定理
2.2 也可以獲得更好的描述。現在我們把 $p(n)$ 當成隨 n 變的函數，定理 2.2 是
說當 $p(n)$ 為一常數函數時，G^p 幾乎都是連通圖；定理 2.4 則是證明幾乎所有的 G^p
都是直徑為 2 的圖。

(註)當 G 有 n 個點，G^p 的邊數約為 $p\left(\frac{n}{2}\right)$。

為了決定 $p(n)$，我們介紹門臨函數(Threshold Function)的概念。

定義 2.5 (單調性質，Monotone property)
若是一個圖在加邊之後，仍具有原圖的性質 Q，則 Q 為一單調性質。

定義 2.6 (門臨函數，Threshold Probability Function)
對於一個單調性質 Q，如果函數 $t(n)$ 滿足
(i) \(\frac{p(n)}{t(n)} \to 0 \) ⇒ 幾乎沒有 \(G^n \) 具有性質 Q，以及

(ii) \(\frac{p(n)}{t(n)} \to \infty \) ⇒ 幾乎所有的 \(G^n \) 都具有性質 Q：則 \(t(n) \) 稱為是該單調性質 Q 的門檻率函數，簡稱門檻函數。

顯然，一種單調性質可能有很多不同的門檻函數：這個函數基本上離開 \(p(n) \)很近才會發揮尋找 \(p(n) \) 的效用。值得一提的是，馬可夫不等式在尋找 \(p(n) \) 也提供了重要的訊息：前面提到，假如 \(X=0 \) 代表性質 Q 存在，我們就先證明 \(E(X) \to 0 \)來推得 \(P(Q) \to 1 \)。因此，我們要的 \(p(n) \) 令得 \(E(X) \to 0 \)。通常我們找到的 \(p(n) \)
會具有一個參數 \(c \)，例如：\(p(n) = c \frac{\ln n}{n} \)，而結論是隨著 \(c \) 的改變 \(E(X) \to 0 \) 或
\(E(X) \to \infty \)。在這裡，我們一般是經由 \(E(X) \to \infty \) 來推得 \(P(X = 0) \to 0 \)，當然在十分極端的情況下，這種概念不一定對。例如：\(P(X = 0) \to 0.5 \)，\(P(X = n) \to 0.5 \)，則 \(E(X) \to \infty \)。為了避免這種現象，額外的要求是必然的。接下來介紹一些統計上的術語。

定義 2.7 (Moment，Variance，Standard Deviation)
1. \(X \) 的第 \(r \) 個 Moment 爲 \(E(X^r) \)。
2. \(X \) 的變異數(Variance)，\(Var(X) = E[(X - E(X))^2] \)
3. \(X \) 的標準差(Standard Deviation)為 \(Var(X)^{1/2} \)。

引理 2.8 (Second Moment Method)

令 \(X \) 爲一隨機變數，則 \(P(X = 0) \leq \frac{E(X^2) - E(X)^2}{E(X)^2} \)；而當 \(E(X^2) \to 1 \) 時，
\(P(X = 0) \to 0 \)。

證明：由馬可夫不等式，考慮函數 \((X - E(X))^2 \)，值 \(t^2 \)，則

\[P[(X - E(X))^2 \geq t^2] \leq \frac{E[(X - E(X))^2]}{t^2} \]

(Chebyshev’s Inequality)。

但是 \(Var(X) = E(X^2 - 2XE(X) + E(X)^2) = E(X^2) - E(X)^2 \) (\(E(EX) = E(X) \))

所以 \(P[(X - E(X))^2 \geq t^2] \leq \frac{(E(X^2) - E(X)^2)}{t^2} \)。

令 \(t = E(X) \)，則 \(P[(X - E(X))^2 \geq E(X)] = P(X = 0) \) （？）。

70
於是 \[P(X = 0) \leq \frac{E(X^2) - E(X)^2}{E(X)^2} \]。

剩下的敘述很容易證明。

Q.E.D

接下來討論的是在什麼情況下會產生孤立點(Isolated Vertices)。

定理 2.9 在 Model A 中，孤立點消失的門檻數為 \(\frac{\ln n}{n} \)。在 Model B 中，門檻數為 \(\frac{1}{2} \ln n \)。

證明：令 \(X \) 為孤立點的個數，\(X_i \) 為指示變數，它決定點 \(v_i \) 是否為一個孤立點。

所以，\(E(X) = \sum E(X_i) = n(1 - p)^{n-1} \)。由漸

\[(1 - p)^n = e^{n \ln(1-p)} = e^{np - \frac{np^2}{2} + \frac{np^3}{3} - \cdots} = e^{np} e^{-\frac{np^2}{2} + \frac{np^3}{3} - \cdots} \sim e^{-np} \quad (np^2 \to 0),\]

\[(1 - p)^{n-1} \sim 1, \text{ 所以在} np^2 \to 0\text{ 的情況下，} E(X) \sim ne^{-np} \quad \cdots(*)\]

令 \(p = c \frac{\ln n}{n} \)，則 \(E(X) \sim n^{1-c} \)。（c 可能隨著 n 而改變。）

現在，當 \(c > 1 \)，則 \(E(X) \to 0 \)；而當 \(c < 1 \)，則 \(E(X) \to \infty \)，我們要證明 \(P(X = 0) \to 0 \)。

由引理 2.8，我們只要證明 \(E(X^2) \sim E(X)^2 \) 即可。

\[E(X^2) = \sum_{i=1}^{n} E(X_i^2) + \sum_{i \neq j} E(X_iX_j) = E(X) + n(n-1)E(X_iX_j) \quad (X_i^2 = X_i). \]

現在 \(X, X_j = 1 \) 的充要條件為 \(v_i \) 與 \(v_j \) 均為孤立點，所以 \(E(X_iX_j) = (1-p)^{2n-3} \)。

由於 \((1-p)^n \sim e^{-np} \)，所以 \(E(X_iX_j) \sim e^{-2np} \)，這可以推得

\[E(X^2) \sim E(X) + n(n-1)e^{-2np} \sim E(X) + (E(X))^2, \quad (\text{由}(*)). \]

因為 \(E(X) \to \infty \)，所以 \(E(X^2) \sim E(X)^2 \)（\(E(X) \) 次數較低），定理得證。Q.E.D

接下來，我們再證明一個更強的結果，當然這個時候門檻數也會不一樣。

定義 2.10 令 \(G \) 爲一圖，它度數的平均值為 \(d \)。如果 \(G \) 的任意導出子圖(Induced Subgraph) \(H \) 的度數平均不大於 \(d \)，則 \(G \) 稱為是平衡圖(Balanced)。

例：完全圖，平衡多部圖，正則圖，森林(Forest)，

定理 2.11 令 \(H \) 爲 \(k \) 點 \(\ell \) 邊的平衡圖，則 \(t(n) = n^{-k/\ell} \) 爲 Model A 中，幾乎所有 \(G^\ell \)
都具子圖 H 的門檻函數。

証明：令 X 爲 \(G^p \) 中含有子圖 H 的個數，所以 X 也可以看成是 \(K_n \) 中可能的子圖 H 之指示變數 (Indicator Variables)。顯然 \(K_n \) 中可能的選擇有

\[n^k = n(n-1)\cdots(n-k+1) \]

種，亦即由 V(H) 對應到 [n] 的不同方式有 \(n^k \) 種。然而在這些方式中，每個 H 都會被算 \(|Aut(H)| = \Lambda \) 次，所以實際上不同的指示變數 X，有 \(\frac{n^k}{A} \) 個，由 k 是定數，

\[E(X) = \sum E(X_i) \sim \frac{n^k}{A} \cdot p^i \] (每個 H 有 i 個邊，而且這些邊都要出現)。

現在，令 \(p(n) = c_n n^{-k/i} \)，所以 \(E(X) \sim \frac{n^k}{A} \cdot C_n \cdot n^{-k} = \frac{1}{A} C_n \)。因此，當 \(c_n \to 0 \) 則 \(E(X) \to 0 \)，同時 \(c_n \to \infty \) 可以推得 \(E(X) \to \infty \)。以下我們希望証明 \(P(X = 0) \to 0 \)。由 Second Moment Lemma，我們只需証明 \(E(X^2) \sim E(X)^2 \) 即可，當然此時 \(c_n \to \infty \)。

同上定理，

\[E(X^2) \sim \sum E(X_i^2) + \sum E(X_i X_j) \] (不相等，因為 \(E(X_i X_j) \) 與 \(H' \cap H \) 有極大的關聯。由於 \(H_i \) 與 \(H_j \) 可以想成是 H 的拷貝，\(H' \) 可以看成是 H 的子圖，令 \(H' \) 有 r 個點及 s 個邊，於是 \(E(X_i X_j) = p^{2i-5} \)。再看不同的數對 \(\{i, j\} \)，因為 \(H' \) 已經選了 r 點，所以 \(H_i \) 與 \(H_j \) 各需再選 k-r 個點，這表示點集合的選擇方式有

\[\frac{n!}{r!(k-r)!} \cdot \frac{n^{2k-r}}{(n-2k+r)!} \sim \frac{n^{2k-r}}{r!(k-r)!} \] 另外，將 \(H' \) 加大到 H 的方法數 M 與 \(H' \) 有關而與 n 與 p 無關，所以由 \(\{i, j\} \) 所決定的

\[E(X_i X_j) \sim M \cdot \frac{n^{2k-r}}{r!(k-r)!} \cdot p^{2i-5} \] 令 \(\alpha_{H'} = M \cdot \frac{n^{2k-r}}{r!(k-r)!} \)。

則 \(E_{H'} = E(X_i X_j) \sim \alpha_{H'} n^{2k-r} p^{2i-5} \)。

當 \(r = s = 0 \) 時，\(M = \binom{k}{r}^2 \)，因此，\(\alpha_{H'} \sim n^{2k} p^{2i} \) ～ \(E(X)^2 \)（此時 \(H' \) 爲空圖）。這表示

\[\sum_{H' \neq \phi} E(X_i X_j) \sim E(X)^2 \] 剩下的部份是証明當 \(n \to \infty \) 時，
\[
\sum_{H' \neq \phi} \frac{E(X, X_j)}{\sum_{H \neq \phi} E(X, X_j)} \rightarrow 0.
\]

由前面的計算，\(E_{H'} \sim \alpha_{H'} A^2 E(X)^2 n^{-r} p^{-t} \)。因為 \(H \) 爲平衡圖，所以 \(H' \) 的平均

度數 \(\frac{2k}{r} \) 不大於 \(H \) 的平均度數 \(\frac{2f}{k} \)，所以 \(pn^{r/s} \geq pn^{k/t} \rightarrow \infty (c_n \rightarrow \infty) \)。

於是 \(p^{-r} p^{-t} \rightarrow 0 \)，所以 \(E_{H'} = o\left(E(X)^2\right) \) (當 \(H' \neq \phi \))。定理得証。 Q.E.D.

（註）任選一個樹圖當 \(H \)，則它的門檻函數非常接近 \(n^{-1} \)；這也說明了要使得幾乎所有 \(G^r \) 都是連通圖， \(p \) 並不需要太大。

（註）定理 2.11 的 \(H \) 如果不是平衡圖，則它的門檻函數可以用 \(H \) 的密度 \(d(H) = \frac{e(H)}{N(H)} \) 來決定。

問題：令 \(\rho(H) = \max_{F \in H} d(F) \) 代表 \(H \) 的最大密度，則幾乎所有 \(G^r \) 都包含子圖 \(H \) 的門

檻函數為 \(n^{-1} \rho(H) \) （Model A）。
§3. 圖的進化（Evolution）

從進化學的觀點來看相機的生成，同時長出 m 個邊的機率與一邊一邊地生成直到有 m 個邊的機率是相同的。但是，一邊一邊地成長比較能夠想像所得到的圖可能具有什麼樣的性質，這與真正的實驗（電腦模擬）結果應該差不多；同時產生 m 個邊比較困難利用直覺的理由（Intuitive Reasoning）來判斷結果，這也是我們利用 Model A 而不是因考慮 m 邊圖的性質而使用 Model B。

定義 3.1.（階段，Stage）
在進化中一個階段（a stage）是指某一個範圍的 $m(n)$ （或 $p(n)$），在這個範圍內，圖的結構沒有太大的改變。

要真正去計算 $p(n)$ 的範圍（或 $m(n)$ 的範圍）使得這個時候，圖具有某一種特殊的結構是非常困難的；因此，我們只能大致地加以描述。譬如，當 r 為固定數時，A_1,A_2,\ldots,A_r 等每一個現象幾乎一定會發生，則我們相信他們全部都被幾乎會發生，而沒有想像在某一個現象發生時，其它現象會受影響（理論上，是可能如此。）

Stage 1. 當 $p \sim cn^{-k/(k-1)}$，則 G^p 中沒有圈。

證明. 令 X 爲 G^p 中圈的個數。則 $E(X) = \sum_{k=3}^{n} \binom{n}{k} \cdot \frac{1}{2} \cdot (k-1) p^k < \sum_{k=3}^{n} (np)^k / 2k$，由於 $pn \to 0$，所以 $E(X) \to 0$。

Stage 2. 當 p 進化到 $c n^{-1}$ （$0 < c < 1$），則 G^p 中的圈數就再是 0，因爲一個 $np \to c$，則 $E(X) \to c$，於是圈的個數將隨著 n 的改變而有所不同；在這個時候，（？）最大的部分（Component）大約有 $\log n$ 個邊，而且有很多部分最多只有一個圈，同時不在圈上的點仍有很多，或則說不含圈的部分（Acyclic Components）有很多。

Stage 3. 當 $c \geq 1$ 時，G^p 的結構產生相當程度的變化。圈是一定有，而且最大部
分的邊數也由 $\log n$ 跳到 \sqrt{n}；在 $c > 1$ 時，不在最大部分的點剩下 $o(n)$。甚至可以
證明幾乎所有的 G^p 都不是平面圖，某些圈也會有互相跨越的弦（Chords）。

Stage 4. 當 p 接近 $c \log n / n$ 時，如果 $c < 1$，則任何的 G^p 都會有孤立點，而在 $c > 1$ 時，所有的孤立點都會消失（定理第二節），這個時候，G^p 中會產生巨大的部分（Giant Component），最小的度數 k （產生的門檻函數為 $\log n / n + (k-1) \log \log n / n \right)$。

Stage 5. （Last stage）$p = c \log n / n, c \to \infty$。（$p = o(1)$。）

Stage 6. $p = c$。回頭前面“幾乎所有的圖都是直徑為 2 的圖”。

在這些變化中，如果我們選擇一個函數 $o(n)$ 來取代 c，則以下的結果在 $o(n)$
滿足一些條件下成立。

定理 3.2. 令 \(\omega(n) \to \infty \) 但是速度非常慢，\(p = \omega(n) \log n / n \) 以及 \(\varepsilon > 0 \)。則幾乎所有的圖 \(G^p \) 都滿足以下的不等式：\((1 - \varepsilon)pn < \delta(G^p) \leq \Delta(G^p) \leq (1 + \varepsilon)pn \)。

證明. 參考 [Erdős-Rényi, 1966]

這表示幾乎所有的點，它們的度數接近平均值 \(pn \)，而實際上仍有一些變化，例如當 \(p \leq \frac{1}{2} \)，Bollobaš [1982] 就證明存在唯一最大度數點的充要條件為 \(pn/\log n \to \infty \)。以下是一個有關點度數分配的結果。在敘述這個定理之前，我們先回憶一下小“o” 的概念。

定義 3.3. \(O(f) = \{ g \mid \exists c, a \in \mathbb{R} s.t. g(x) \leq c[f(x)] \text{ for } x > a \} \)。

\(o(f) = \{ g \mid g(x) = o(f(x)) \to 0 \} \)。

定理 3.4. [Bollobaš, 1981]

令 \(p \) 爲固定機率，\(t(n) \in o(n/\log n)^{1/4} \)，則幾乎所有的 \(G^p \) 它的最大度數的 \(t(n) \) 個點度數都不同。另一方面，當 \(t(n) \notin o(n/\log n)^{1/4} \) 時，則 \(n \) 存在一個 \(i < t(n), d_i = d_{i+1} \)。（\(d_1 \geq d_2 \geq \cdots \)）

推論 3.5. [Erdős 及 Wilson, 1977]

令 \(p = \frac{1}{2} \)，則幾乎所有的 \(G^p \) 都有唯一具有最大度數的點。

定理 3.6. [Vizing, 1964]

如果 \(\chi(G) = \Delta(G) + 1 \) 則在 \(G \) 中度數為 \(\Delta(G) \) 的點至少有三個。

定理 3.7. 當 \(p = \frac{1}{2} \) 時，幾乎所有的 \(G^p \) 它的邊著色數都是 \(\Delta(G) \)。

證明. 由 Vizing 定理，\(\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1 \)。

利用定理 3.4 我們還可以證明以下的定理。

定理 3.8. 令 \(\Omega^2 = \{ (G, G') \mid G, G' \in \Omega, \Omega \text{ 为所有一般 } n \text{ 点图所成的集合} \} \) 則幾乎所
有Ω^2中的圖對都可以用一個複雜度為n^2的演算法來驗證G與G'是否同構。

證明. 參考 [Babai-Erdős-Selbow, 1980]。

在上一節，我們討論到一個平衡圖存在的門檻函數，因此一個完全子圖的存在無庸置疑，問題是當p固定時，最大的完全子圖（Clique）會有多大。

定理 3.9. [Matula, 1972]

在固定$p = \frac{1}{b}, \varepsilon > 0$的情況下，幾乎所有圖$G^p$它的 Clique Number $\omega(G)$介於$|d - \varepsilon|$與$|d + \varepsilon|$之間，其中 $d = 2\log_b^n - 2\log_b^n \log_b^n + 2\log_b \sqrt{e/2} + 1$。

證明. (概述)

令X_r代表在圖中r-clique 的個數，則 $E(X_r) = \binom{n}{r} p^{(\frac{r}{2})}$。由 Stirling 公式，

\[r! \sim (r/e)^r \sqrt{2\pi r} \]

所以 $E(X_r) \sim (2\pi r)^{\frac{1}{2}} (enr^{-1} p^{(r-1)/2})$。這表示，當$r \to \infty$及 $(enr^{-1} p^{(r-1)/2}) \leq 1$成立的時候 $E(X_r) \to 0$。

\[enr^{-1} p^{(r-1)/2} \leq 1 \Rightarrow \log_b(enr^{-1} p^{(r-1)/2}) \leq 0 \]

\[\log_b^n + \log_b^n - \log_b^n + \frac{1}{2} (1-r) \leq 0 \quad (p = \frac{1}{b}) \]

所以 $r = 2\log_b^n + 2\log_b^n - 2\log_b^n + 1$。

因此 $r \geq d(n)$。這也表示，當$r > d + \varepsilon$時，幾乎所有的G^p都不含r-clique。

證明 r-clique 存在 ($r > d - \varepsilon$) 比較困難，我們利 Second Momen 的方法來證明。

因爲 $E(X_r^2) = \binom{n}{r} \sum_{k=0}^{r} \binom{r}{k} \left(\binom{n-r}{r-k} p^{(\frac{k}{2})} \right)$，其中$k$ 為兩個r-cliques 的共用點。

以下我們證明 $E(X_r^2)$ 主要是由互斥的兩個r-cliques 來決定，亦即 $k = 0$ 爲主要計算的項。

令 $E(X_r^2)/E(X_r) = \alpha_n + \beta_n \quad \text{(} E(X_r) = \binom{n}{r} p^{(\frac{r}{2})} \text{)}$，其中 $\alpha_n = \binom{n}{r}^{-1} \binom{n-r}{r}$，

\[\beta_n = \binom{n}{r}^{-1} \sum_{k=1}^{r} \binom{r}{k} \binom{n-r}{r-k} b^{(\frac{k}{2})} \]

現在，當$r \sim 2\log_b^n$ 時 $\alpha_n \sim e^{-r^2/(b-r)} \to 1, \beta_n \to 0$（比較複雜），所以 r-clique 存在（Second Momen 的方法）。 Q.E.D
與 Clique 對稱的概念為獨立數 (Independence Number)，而把一圖的點集分成最少的獨立集為該圖的著色數 (Chromatic Number，\(\chi(G)\))。

定理 3.10. [Grimmet 及 McDiarmid, 1975]
令 \(p\) 為邊出現的機率，
\[
\frac{1}{2} < p < 1 - \varepsilon,
\]
徑根據獨立集的斷定，\(p\) 的機率值為
\[
\chi(G) \leq \left(\frac{1}{2} + \varepsilon\right)n/(\log_b n).
\]

證明. 因為 \(p\) 為定數，所以 \(1 - p\) 也是定數，同時 \(1 - p\) 是 \(G\) 邊出現的機率，所以由定理 3.9，幾乎所有 \(G\) 中不含 Clique 它有 \((1 + o(1))2\log_b n\) 點，
\[b = \frac{1}{1 - p}.
\]
因此，幾乎在所有的 \(G\) 中不含獨立集，它具有 \((1 + o(1))2\log_b n\) 個點，所以
\[
\chi(G) \geq \frac{n}{(1 + o(1))2\log_b n} \approx \left(\frac{1}{2} - \varepsilon\right)n/\log_b n.
\]
以下證明上界。

令 \(f(n) = (1 + \varepsilon)n/\log_b n\) 且 \(\varepsilon > 0\) 的選擇使得 \(f(n)\) 為一整數。我們證明利用 Greedy Algorithm 來塗 \(v_1, v_2, \ldots, v_n\) 所需要的顏色為 \(f(n)\)。假設 \(f(n)\) 個顏色不夠用，所以有些圖它所需要的顏色數大於 \(f(n)\)。令 \(B_n\) 代表 \(f(n)\) 個顏色不夠用而且 \(v_m\) 為第一點使用 \(f(n) + 1\) 來著色的圖所成的集合。

給定一個圖 \(G \in B_n\) 令 \(G_m = [v_1, v_2, \ldots, v_m]\)，則顯然 \(\chi(G_m) \leq f(n)\)。令 \(k_i\) 為顏色 \(i\) 出現在 \(G_m\) 中的次數。由於 \(v_m\) 著 \(f(n) + 1\)，所以 \(N(v_m)\) 中的點 \(1, 2, \ldots, f(n)\) 等顏色都必定會出現，而且不會有其他顏色。所以在給定 \(k_i| i = 1, 2, \ldots, f(n)\) 之後，出現這種著色的機率為
\[
\prod_{i=1}^{f(n)} \left(1 - (1 - p)^{k_i}\right).
\]
由於
\[
\prod_{i=1}^{f(n)} \left[1 - (1 - p)^{k_i}\right] \leq \left(1 - (1 - p)^{f(n)}\right)^{f(n)} < \left(1 - (1 - p)^{n/f(n)}\right)^{f(n)} = \text{def} b_n.
\]
因爲對所有的 \(G_m\) 上式皆成立，所以
\[
p(B_n) < b_n, \sum_{m=1}^{n} p(B_m) < nb_n,
\]
現在用 \(cn/\log n\) 來取代 \(f(n)\)，則
\[
(1 - p)^{n/f(n)} = n^{-1/c},
\]
由此可推得 \(\lim_{n \to \infty} nb_n = 0\)，所以 \(\sum_{m=1}^{n} p(B_m) \to 0\)（當 \(n \to \infty\)）定理得證。

Q.E.D

（註）令 \(p = \frac{1}{2}\)，則 \(b = 2\)。所以幾乎所有 16 點圖 \(G\)，
\(2 - 4\varepsilon \leq \chi(G) \leq 4(1 + \varepsilon)\)。

從這個定理，我們可以看來 \(\chi(G)\) 大約等於 \(n \log_b n\)，這個現象在 1981，Erdös
及 Fajtlowicz 也觀察出 $\chi(G)$ 隨著 n 的變化它的成長有如函數 $g \in \Theta(n/\log n) = O(f) \cap \Omega(f)$，其中

$$\Omega(f) = \{ g \mid \exists c, a \in \mathbb{R}, \text{s.t. } g(x) \geq c |f(x)| \text{ for } x > a \}$$

$$O(f) = \{ g \mid \exists c, a \in \mathbb{R}, \text{s.t. } g(x) \leq c |f(x)| \text{ for } x > a \}$$

問題

1. 假設 $0 < p < 1$, k_1, k_2, \cdots, k_n 爲正整數同時 $\sum_{i=1}^{r} k_i = m$。證明

$$\prod_{i=1}^{r} \left[1 - (1 - p)^{k_i} \right] \leq \left[1 - (1 - p)^{m/r} \right].$$

（註）$(1 - x_1)(1 - x_2) \leq \left(1 - \frac{x_1 + x_2}{2}\right)^2$。

2. 假設 $p = \frac{1}{n}, \varepsilon > 0$。證明幾乎所也的圖 G^p 都不含點數為 $(1 + \varepsilon)n/2$ 的部分。
§4. 價値重要的結果(Random Graph)

在隨機圖的研究過程中出現過非常多漂亮的結果, 我們自然無法一一介紹, 所以除了前面三節的結果之外, 這一節再加入幾個非常具有代表性的工作。

一般而言, 當邊出現的機率 \(p \) 為一定數時, 隨機圖很容易就會有相當令人意外的好結構。

定理 4.1. 對於定數 \(p \in (0, 1) \) 及固定的圖 \(H \), 幾乎所有的 \(G^p \) 都會有一個導出子圖(Induced Subgraph)與 \(H \) 同構。

證明. 令 \(|V(H)| = k, |V(G)| = n \geq k \), 存在一集 \(U \subseteq V(G) \) 使得 \(<U>_G \cong H \) 的機率為 \(b \) 。由於邊的選擇與 \(p \) 有關而與 \(n \) 無關, 所以 \(b \) 與 \(n \) 無關。現在, \(G \) 中出現的 \(k \) 階集有 \(\left[\frac{n}{k} \right] \) 個, 而每個 \(k \) 階集 \(U \), \(<U>_G \) 都不與 \(H \) 同構的機率為 \((1 - b)^k \)

(獨立事件), 所以 \(P[H \not\subset G] \leq (1 - b)^k \to 0 \quad (n \to \infty) \) Q.E.D

(註): 這個定理描述的現象: 不管 \(H \) 多複雜, 邊出現的機率多小, 只要 \(n \) 夠大, 就可以得到幾乎所有的隨機圖 \(G \), \(H \subseteq G \)。

定義 4.2. Property \(P_{i,j} \)：任給一個 \(i, j \in N \), 對於任意兩個互斥點集合 \(|U| \leq i \) 與 \(|W| \leq j \), 都一定存在一個點 \(v \in U \cup W \), 同時 \(v \) 與 \(U \) 中的點全都不相鄰, 但是與 \(W \) 中的點全都不相鄰。

定理 4.3. 對於任意的 \(i, j \in N \) 及 \(p \in (0, 1) \), 幾乎所有的圖 \(G^p \) 都具有性質 \(P_{i,j} \)。

證明. 選定 \(U, W \) 及 \(v \in G \setminus (U \cup W) \), 則同時 \(v \) 與 \(U \) 中的點全都不相鄰, 但是與 \(W \) 中的點全都不相鄰的機率為 \(p^{|U|q^{|W|}} \). \((q = (1 - p)) \). 因此, 找不到適合的 \(v \) 之機率(獨立事件)為 \((1 - p^{|U|q^{|W|}}) \to (1 - p^{|W|})^n \to 0 \). 由 \(n \to \infty \)。故有 \(n^{i+j} \) 與 \((U, W) \), 因為不存在 \(v \) 的機率為 \(n^{i+j}(1 - p^{|W|})^n \to 0 \) \((n \to \infty) \)。 Q.E.D

推論 4.3. 對於所有的 \(p \in (0, 1) \), \(k \in N \), 幾乎所有的圖 \(G^p \) 都是 \(k \) - 連通。

證明. 因為幾乎所有的圖都具有性質 \(P_{2,k-1} \), 所以對任何 \(W \), \(|W| = k - 1 \) 都存在一...
點
，它與任意不在
中的兩點
和
皆相連，所以
不會是一個切集(Cutset)；這表示幾乎所有的圖都是
連通。(W does not separate x from y)

Q.E.D

(註)定理 4.3 同時可以推得任兩點都有一個共同的鄰點，所以
的直徑為

定理 4.4. \(\forall p \in (0, 1), \varepsilon > 0 \)，幾乎所有的
它的點著色數

\[
\chi(G^p) > \frac{\ln(\frac{1}{1-p})}{2 + \varepsilon} \frac{n}{\ln n}
\]

證明. 令
代表
的獨立數，

則

\[
P[\alpha(G^p) \geq k] \leq \binom{n}{k} (1-p)^{\frac{k}{2}} \leq n^k (1-p)^{\frac{k}{2}}
\]

\[
= (1-p)^{\frac{k\ln n}{\ln(1-p)} \frac{1}{2} (k-1)} = (1-p)^{\frac{k}{2} \left(\frac{2\ln n}{\ln(1-p)} + k-1 \right)}
\]

\[\text{(*)}
\]

由於，當
時，(*) \to 0，所以，幾乎所有的
在一個獨立集它有
個點以上，因此，

\[
\chi(G^p) > \frac{n}{k} = \frac{\ln(\frac{1}{1-p})}{2 + \varepsilon} \frac{n}{\ln n}
\]

Q.E.D

(註) Bolloba's 在 1988 年證明
的估算相當 Sharp！

從直觀來看，一個圖邊數越多(與
比較)它的點著色數越大；最小圈越小，
點著色數也越大，然而，以下的定理說明了最小圈可以維持很大而它的點著色數
也很大。

定理 4.5. 對於任意的正整數
，必存在一個圖
它的內圈(girth) \(g(H) > k \) 而且

\[\chi(H) > k\]

證明. 令
，
令
，令
在隨機圖中邊數
不亞於
的圈數。所以
\[E(X) = \sum_{i=3}^{k} \frac{n^i}{2i} p^i \leq \frac{1}{2} \sum_{i=3}^{k} n^i p^i \leq \frac{1}{2} (k-2)n^k p^k \quad ((np)^i \leq (np)^k, np = n^\varepsilon \geq 1) \]

由於 \(P[X \geq a] \leq \frac{E(X)}{a} \)，所以

\[P\left[X \geq \frac{n}{2}\right] \leq \frac{2E(X)}{n} \leq (k-2)n^{k-1} p^k = (k-2)n^{k-1} n^{(\varepsilon-1)k} = (k-2)n^{k\varepsilon-1} \]

又因 \(k\varepsilon < 1 \)，所以 \(\lim_{n \to \infty} P[X \geq \frac{n}{2}] = 0 \)，令 \(n \) 夠大使得 \(P[X \geq \frac{n}{2}] < \frac{1}{2} \) 而且

\[P[\alpha(G) \geq \frac{n}{2k}] < \frac{1}{2} \]

這是因為 \(\lim_{n \to \infty} P[\alpha(G) \geq \frac{n}{2k}] = 0 \) (利用 Thm.4.4)，\(\alpha(G) \) 爲圖的獨立數。

\[\left(P[\alpha(G) \geq r] \leq \binom{n}{r} (1-p)^{\frac{r}{2}} \leq (n e^{-p(r-1)/2})^r \to 0 \quad (n \to \infty). \right) \]

所以，存在一個圖 \(G \) 它有少於 \(\frac{n}{2} \) 個的小圈(長度不大大於 \(k \)，而且 \(\alpha(G) < \frac{n^k}{2} \))。對於那些圈，每圈選

一點加以刪除，勝下圖 \(H \)，則 \(|V(H)| \geq \frac{n}{2} \), \(g(H) > k \), \(\chi(H) \geq \frac{V(H)}{\alpha(H)} \geq \frac{n/2}{\alpha(G)} > k \)。

Q.E.D