ࡱ> ndBX#M#U[PNG  IHDRprgIFxNETSCAPE2.0$NPPLTEkkkZ{cRBkZƔkƥJJJ{֭sssƵZZZscR֭s{{ccJ){JJ1{c9Ɣk{J){k9!c1J{c{ZR!k1JJ1Ƅ9ƵƭZB9ֽֽsZ罜ƥƄc9ƽތZ1޽c9s1ƵsRB)kR9sR)cc)Z9{BJB9cZZ91)kJ)R9ZRJJR999ssƥ))))B9c{9!HtRNS0JbKGDHgIFg P% cmPPJCmp0712Hs ~IDAThC[VH*"#qQY?noUuw; ٭s1l?7HLd%D$Nwqyuu_$B&]nn]]" D1nV%@Ӌ!V>.֠ +wrLvT$R^h1ݪZ!㯜K2 3;)2h@b[_5]WOh@$ZrA_uEu4g )x`҈oH߬@- PSF@6a-e& AT9󛹎`:~koe;/Df`0Վ"zA@ / 9ScgD0#yIwgމ 1ϟ?\iU 9]ϑ |/'`ැ^UQhȦOLb*00LRK#Uh/2NrMHCF־4>CYc*Q ?NЭY%n.Ja~/:<:&68IBo<YJ50+)th#aJ *p*~< *L?LvK@EPp{3眀D]b4 K⎀ !sF.C@M PsSF]GhB6U߿ƹh 1g,](YmquOq N b"Ro?5W4~IJQ6ݢ+7ZL `@@a_dP{>%94xpGÇ0Z >;c@8gG [nL TpvFȁ֗'Ae?@i)F¨_Á$d`=,#!.|PCK% PƅS@jDvyn@[9TC ~@ 8|̑нҿ"\l0x1 B 8=dV]Tuh4nR@7 aQ;J+p@t?Yo0DR\bB %H[ hZ%OSÓgBDŒb ؟F ?-g6J(X!0K8U!%R`WLR n}o~tbҀ{ ߡj@$ gGa5U0\T%xJEBSc P(pkߘPG@I%c`}Ce ziJ[EP*[e\ pQlQ)D 79zs lq;wQ yzywm 2x_ /<8g.EM* =U@˔m֦\3Xᰳ 98qهr;Ae>)dрD6 pd џ>'9 t:Ɂml0J!_!_G HO`)ϯknjV8;܎ͻů'p8X$<: :v8Y!(2tJ>\C@lw<~6t\q"x#>݅=ptQB*9Tk@@|_9(H=SځyC%'`%  2@gZ`O\f4BgxU/MVC" lC4m/@Rn;n,xۥ +p4~[MoP-gٚI,y-V_rygĻE+tEXtComment@:Ju@ http://i.am/hk4R5pmsOGMSOFFICE9.0GIF89apkkkZ{cRBkZƔkƥJJJ{֭sssƵZZZscR֭s{{ccJ){JJ1{c9Ɣk{J){k9!c1J{c{ZR!k1JJ1Ƅ9ƵƭZB9ֽֽsZ罜ƥƄc9ƽތZ1޽c9s1ƵsRB)kR9sR)cc)Z9{BJB9cZZ91)kJ)R9ZRJJR999ssƥ))))B9c{9!! NETSCAPE2.0! ,p@2   222 ǷȌ2ٖ䓹 "dc7AD.OYإ 6 Ǐ C~G_H08.o=H"z )a>bV?42TJCKmҡB~^8U4.PN5:AhJ IY}zr @ p"\HcC1 .jPvfѸ P(ώZD!(HjҢ4*eZzK<ZIi3BiC0ӗbiBU׊6Q~B)SF&5r2ȷN$)"FU],k'PVb -:gd;;ƷMHW^- Wgzך^lr*m.s,n8jp(e/ j6'v9;ӈXi Py%z2ES"[CNh>AĆӤ . "Gi,Cޞ v Ň5 <7 Fk}`n X8`q /j0&(O=/>饯Rn% <E`ԙ$$wJqD`@ fNvoO)Ne6߭FW@=fyI}8y~MAfCr!(Ʃ v?ɤWcIY6s*Td<6/qXPar0K,SeFM,&RR6+Z`n5G݂l^F' Yd럳QyF4<:&A2q" Izx!!^OܦM6q94$ӱ EXYݲ7ol&@t3/Hp\@um8` A,w`nXL{˞{NzesW /~0@}9Ky: `Aok^ׄf4{R ? =`~~THP+Α?B'{b|q0w0@.' EK((X$3FנLcyO\ ?x:8dU! ,yn@27 5 9827 Ųʶϟş ٘8:ڋ=282 א^xׂ`22Ep2"HÄ D CH$AQؑV 1 i)cfşЙJ)#ѣGOrXiӣRJTWt7mf路! Ԁbֳ8/D-G()Ҩ M $+X h# ,PY@ 3kN:r.3~m tF$Đ pה˜M۸sͻ7Tϟ'eH.jMn/\6_PVlZϾzNi.?y/X5aYzO4%jD7YhďDҡ d9# x;M}]h w'eOt5g:GZepyJ/, ~@ޯ& ^UScM :j`/t4 ڤʗɨ3SR (sΫYҀb)p1*Py亸df~BIW@t3 `RRmJrgP8U)L՚Z9Q0! $jH]ed)JKD$/&kd0Id@PQ3S!tqQ/w^UӹY\23AM}#Xԙ;'w N {Ѷf3.pզ\L%nBjXh}),+)f0YIbc&ɐg:* @0dB䠣 ZM g/dkXg&Kg64=Sa`<#1Wlh2H@.f(j4!4PCWq)hy~fQPlU:QR 4I?q4#]XҐTL[K_*Ќ,("t0{**VSF@ ,PLer:jO9ޔiХ.(p7n+ߨqUnU؂: ɵȫ y~++vX j8& uʼ@RvV$xH"FMZ .3(&YŁ( ȮDT&Ž~<4ѧב.LZd ह IZP/qDޗHʹ0U4bGgeA '/P[ILr NC4"OO0~w{34$&30+坈)yb9PTY3в @Q'zqd+7aJBJ$&(xDgQ/&VƎ2*XV|6!7z=|5𿚍fG ֏3l0/cJG 1ҍ\%8 Z$L3ԡPg*v]'d-T4cH-fIt$?ǩs.fB+Sc| C,9AwVX = XFvMۏUJHgZ52ޑ ms|=% t(nA}"6+AG  ̰dɂ x | cȗ$7d ()R|iIş@͙G1KA ISDh[d3ɕke 8}4T[ZfXi]Hvx2GFv|&\D]qcag*փP%򣽒B%C ӨOXͺװax)lA`fHJFԨc+_y DKNuy ɱ×# $^}QK4{13{Xr407g 7b Gp˔1< (ЄJso'AW<(`KV8$S+: 漀, Ӑ"t'~H2`+u_p`x>] $3x O|õ xOe:yy K@a|*jeXI@}3@G:2g9aY11R ӼcD/x\g SįQZ,cXj *$4b$u1 @`1[:GL> 4]]fv"@ &ItI|2X'_ao}5 4^U:S.GHdpFRQ% \86˂,@Jl:ه-"PbemIfaMy/ySe)4.ƒfm`[Ud @XJp1#lb82䭀0 OH1<9<bߋ8cD`wt|t?IIK$܅’vUI@^zf['Cz`'yE GJ dDF}'f_MII!ӱMj7ea,rD F:DoT TLeZYz}Ҁ= UUM!>t. *`|fH,? Ѳ `M)Hc'86!!b]2r"0N+Їe6\Y\/9{bieRyy #rs­*x̲ 5eWVaJ@9Ϲ&TТe-#ͷ%ЬT<~>v~* $;߯OIn?sC'6;q(0othv#(ySHIybnbkk+B;Z-n7Hsc!5 +I)zѧ2 K`ޔt{`? O2%kJ9z3ZG`LLe.#{q!\0 (OWQXPtgpI瞧/qCGdb'5ZneXG )YӿյO! ,yn@2  UJIJ ʷλҞ:ˏ׉%%M2یVZ2IX IU3ȴ1eIUd)㔀aHN2dp"#h 0`䆒(Sr4NF 0c,Af 8sX(ە*R AvHOdނ{SJE.C)$}HPHZ2ή< A"IE"lX)ոq3H+RYc¥ٯC-H_VhI_ QA # 3VȰ!CedEfLIiBC2$ᶓss/KN0AB i H~OMph J$9[B@B_yDRP á}6$<#( \Bф(+a( ( '%Doٌ8"$MB4`9nPUeXI$KT%~=(0wu%a6ifM2m=a4HND `$J zUxR1fO]@Q[$\أq%faVXH5$,Q)r6(PĶ XxGI}phuk @,D~d~m&gVgEZjUZX$RDG|Rg<$z‚9^jH tU 0oC )P7pu#u) \00,nL:Unm>$a$ \0,338a!$<' -p5یK$Xt8A $!I+= U8 ԩj32\H5'IS &OÄ u4HRѠ 'Y,7t$_(N'D]E!ޥ(NsQm1iANx= $!R;+)C!AE I@> Eٶ ҀK86*2PҴؗ)x =k\ RinJ_g郰 Pc=S;4=zSa@T4YZRTBMjFPiI2 b9M$; FU70M%IQ ~$Ēad,aUj ?(IQ,@8ZM*C5Pˁ $2bC6H$YHxf8(򀸱#.DLOAZrd xQ5ϒAA~e6bi]$~H@jY-lA”48fYrL %,_IhH#^X$PQq 4x߮lKh<3OEf6KFJ|g0fyjP{֕x\3 NNe0UMU c ݱBtzda> .}zt\h9噔kNJ& E.fjDLw4|&Tv'dvlJ,T]qQթwTH-:*WY:>fkʫ@VhBkjʸb"q5Y*Q$'PHxk|W(B3i(]<І8|Y[4.#%(!_ᾖ%`r%JPQnIUщӥsW8o![P䫸>JBlW@dBQ*utk[MeJWf%*nlJ R!m+iHBp9ŚHʮv\pRC4g Ѓ"+%`Qt[JO *Z?H84m`BPmoz?t 3blDjjۣR Х$s4I?4@0a9) gcq YVY(U-)dˣhkEvMzԠ˂eȑX,L,iiH:k&$Isd'wU Qc 'Ʌ djF. 9|rkՃ`NS$ w/<{\AヌdP^\]m2L.+n .XVpe”:I3 7f#B"Q󎛘Hp)DWi>۽4ʼnhF621^B$)n* Yl~eЈg#CTUF g17GpdT7DAWolW吨&pF~Ll]3jn9kfL+9c[I3o{=`&K !_ tCݒ^Af6|&M/)'ɐ2ׅ|Arw9oAɽ[Q@<15AGPiv…@9>&I$wT mԏ1)JaB3Rx9+7fE''ڒ_~Cl\T.DKceZp#P/I nQx0Pg߂&OҐOL/ [lymuҠe \/ϑ00 #0ұL,hVAkR Q=H/0@=h0Q. gr`WyP8 ;O)1V20W@053#K(0\L/D\dHRȉG}\Iv(! ,zo@2e b eWb :F&DU@ T1";k d*U.HP7C}[% G#!|ޣNk{`]+Z] B̍ , 3L&.]ƝH*PGX,ϐ| J ~!# d>!Up8.QNv+{~[x^@vӜ *ȑψ?k LM/W(X^E`[d=]dكh[+Zxg+3˰: to@%z4n,(ex_λVݜ4?U ?JW:/ *9j?6$ j fxڝ[HQԊ ,͠ՃQᒉTD]`( "%ZYم| +„J"^* s|.EÜ"'<ƣ +4h]AWY X!sO7s,ZpF薘 %9ZaaH(fg85g؃[~*BO} 'YI?s2JƠm|&{bT>$!FHܣcxoCr M,f'J(/D2G=޷fNMvЅ=ta+ÇVlCO,/3%τ4!Cay(0H;.O,MJdX\h}V[k%IŭU F`^fN:^UAK%$ʀl_+#/)>J%^DyI7z.B2.`^OpPqZJ7gebz69ǹ,9P#[(:>"8+Xd +JϔT)ZLDI*H4_1kDب lWD`^ 6jHֱ45˾2+_i( / 0DArialgsRomanLL?lB 0e0e A@A5%8c8c     ?1d0u0@Ty2 NP'p<'p@A)BCD|E?p< cw;(@8? @ w Q ʚ;f8ʚ;g4KdKd™ׯ0ppp@ <4!d!dvS0Lv<4ddddvS0Lv80___PPT10 pp? %O =] Grid-Block Designs and Packings8!6((6(&    Hung-Lin Fu P F`  Department of Applied Mathematics National Chiao Tung University Hsin-Chu, Taiwan e z N  'Y x[PPPsP'T '      +       +Graph Decomposition  BAn H  packing of a graph G is a collection of mutually disjoint subsets of E(G) each induces H. If the collection of subsets is a partition of E(G), then we have an H-design of G. If G is the graph lKn, then an H -design (packing) of G is called a l-fold H - design (packing) of order n. b"Z < (< < #     &  X Well-Known H-Designs  <A K3 -design of order n exists if and only if n 1 or 3(mod 6). (Steiner triple system of order n, STS(n)) n = 9 (Affine plane of order 3) 1 2 3 1 4 7 1 5 9 1 6 8 4 5 6 2 5 8 2 6 7 2 4 9 7 8 9 3 6 9 3 4 8 3 5 7+< < < cw< cw< cwcw   K4-Designs0 6 6 6  A K4 -design of order n exists if and only if n 1 or 4 (mod 12). n = 16 (Affine plane of order 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (*) Using 3 mutually orthogonal Latin squares of order 4 to construct the Affine plane.dZZ< < < "!+ S  Grid-Block 6  hDefine G(r,c) as the grid-block with r rows and c columns where each grid point is a (distinct) vertex and two vertices are collinear if they are on the same row or column. If we define a graph from G(r,c) by letting two vertices be adjacent if and only if they are collinear, then G(r,c) is isomorphic to the Cartesian product of Kr and Kc denoted by Kr x Kc.iZ < ] cw<    &R    An Example   uThe green and pink grid-blocks pack K9. Therefore, a G(3,3) - design or a 3x3 grid-block design of order 9 exists! ht%;;cwu  The Existence of G(r,c)-Designs 6  ,If a G(r,c)-design of order n exists then the following conditions hold: (a) rc n, (b) r+c-2 divides n 1, and (c) rc(r+c-2) divides n(n-1).PINI(C((&P  E Lattice Rectangles6  4A G(r,c)-design is called a lattice square provided that r = c = n1/2 named by Yates, 1940. Construction of lattice squares for n1/2 an odd prime power was given by Raghavarao in 1971. Lattice squares were extended to lattice rectangles ( r c and rc = n) by Harshbarger in 1947.@  : ( (+( (  Z   J         Real World 6  DIn most practical uses, the grid-block has size limitation and n is large. Thus, we have to consider the G(r,c) s with r < n1/2 and c < n1/2 , while preserving the unique collinearity condition, i.e. every pair of vertices occur at most once in the same row or column. We need a design!#K0  (N&   j  Known Grid-Block Designs  ~A G(2,2)-design of order n exists if and only if n 1 (mod 8). This is also known as the 4-cycle system of order n. A G(2,3)-design of order n exists if and only if n 1 (mod 9). (J. E. Carter, 1989) A G(3,3)-design of order n exists if and only if n 1 or 9 (mod 36). (Fu, Hwang, Jimbo, Mutoh and Shiue, JSPI 2004)@((+E(8(>(@       1 A Cyclic G(2,4)-Design  n = 33  >,2x4 Grid-Block Designs   A 2x4 grid-block design of order n exists if and only if n 1 (mod 32). (Mutoh, Morihara, Jimbo and Fu, SIAM Discrete Math., 2003) :I=9=@Q    & F1n 1(mod 36) .0 0(   The proof can be obtained right away if there exists an (n,9,1)-BIBD of order n = 36k+1. (See it?) The proof can also be obtained by using the existence of a (k,s,1)-BIBD, a G(3,3)-design of order 37 and a G(3,3)-design of Ks(36). (One vertex in common) ZZZ L   G3Cyclic Constructions   A cyclic (72t+1,3,1)-BIBD and a cyclic (72t+37,3,1)-BIBD exist. Use Peltesohn s result (1938), we have five classes of base blocks for 72t+1 case: (a) for x = 0, 1, & , 3t-1, we have (0,1+2x,33t+1+x), (0,9t+1+2x,27t+1+x) and 0,9t+2+2x,18t+2+x), (b) for x = 0, 1, & , 3t-2, we have (0,2+2x,24t+2+x) and (c) (0,6t,24t+1). Use an imagination to put them together as grid-blocks (mainly by Mutoh). Z(((%(  (84D   9  H2 PG(3,3)-Design Outline of proof. 1. A G(3,3) design of order 9 exists. 2. Let p be an odd prime and v p(mod 2p(p-1)). If there exists a cyclic (v,p,1)-BIBD, then there exists a G(p,p)-design of order pv. (F-H-J-M-S) 3. A cyclic (12k+3,3,1)-BIBD exists. A G(3,3)-design of order 36k+9 exists.  PPP$$$$:N )< hg  G    \  3#4x4 Grid-Blocks0  fBy using the following grid-block we obtain a 4x4 grid-block design of order 97. (Difference Method) ,gR0 g 4$A G(4,4)-Design of K4(4)$  Let the 4 partite sets of K4(4) be {0,1,2,3}. {4,5,6,7}, {8,9,10,11} and {12,13,14,15}. The following two grid-blocks form the design.* i  5% n+1 mn+1 Construction!! ! Theorem If a G(r,c)-design of Kn+1 and Km(n) exists respectively, then a G(r,c)-design of Kmn+1 exists. So, for G(4,4)-designs, we need a design of K97 to start with and we have constructed earlier. It s left to find a G(4,4)-design of Km(96) for proper m.ZgZZ.6W  6&Continued &    Proposition For m 4, a G(4,4)-design of Km(96) exists. Note A 4-GDD of type 24m exists for each m 4. Using this fact and a G(4,4)-design of K4(4) we can prove the proposition. (By inflating a point into 4 points.) 2    ((((&  7'With Two Missing Cases  Theorem A G(4,4)-design of Kv exists if and only if v 1 (mod 96) except possibly v = 193 and v = 289. This is by the reason that the proposition works only for m 4. These two cases have been found recently by Zhang, Ge, Fu, Ling and Mutoh.ZZ((((2(:(7@      8(v = 1930  -The key array we apply to find the solution. >."(( (( . 9) v = 289   We also list a useful array here. Since 289 = 172, we have a finite field of order 289. Let w be a root of a primitive polynomial w2 + w + 3. Then we can use wi as its elements. For convenience, we only list the exponents in the following array.1((,('((((W(  ;+4x4 Grid-Block Design  Combining the works above we have proved the following theorem. Theorem. A 4x4 grid-block design of order v exists if and only if v is congruent to 1 modulo 96.V?(=(  :*3x4 Grid-Block Design  If a 3x4 grid-block design of order v exists, then v 1, 16, 21, 36 (mod 60). This is a joint work with Zhang, Ge, Ling and Mutoh. v = 16 is not possible. (?) For v 1, 21 (mod 60), it is settled. For v 16, 36 (mod 60), we only have 12 finite cases left unsettled. Z55(< (%(@&p   C. $  vA grid-block packing of order n is said to resolvable if the collection of grid-blocks can be partitioned into subclasses R1, R2, & , Rt such that every vertex of Kn is contained in precisely one grid-block of each class. Each Ri is called a resolution class. Clearly, such a packing exists only when rc divides n. <+ E    ?  (+     ?  H     D/A G(4,4)-Packing of order 16 (   Resolvable & ((   E0 (A Resolvable G(3,3)-Packing of order 18 )((  !Ready for Tests?6  yIn DNA library screening, we have a set of oligonucleotides (clones) and a probe X which is a short DNA sequence. Let X denote the dual sequence of X obtained by first reversing the order of letters and then interchanging A with T and C with G. A clone is called positive if it contains X as a subsequence and negative if not. The goal is to identify all the positive clones.z%(< < '(1< &+  ? " Group Testing6  OEconomy of time and costs requires that the clones be assayed in groups. Each group is called a pool. A pool gives a negative outcome, all clones contained in it are found to be negative. On the other hand, if a pool is positive, then some clones are positive. (At the second stage we test each clone individually.) Two-stage Test! VPZ`(,<  P #Library Screening6  4In such screening, a microtiter plate, which is an array with size 8 x 12 or 16 x 24, etc. is utilized and different clones are settled in each spot, called well, of the plate. Every row and every column in a microtiter plate is tested at the same time as a pool in the first stage. (r + c tests for a plate)R5 ~(@      Z $Basic Matrix Method0  yIf there is only one row (or column) of positive then we can determine the positive clones without the second stage test.>z(W z %More Positive Clones0  For example if two rows and two columns are positive as follows, then we can not determine whether the four clones settled at the crossing wells of positives are really positive or not..I`  &Unique Collinearity Condition&     Thus, if it is allowed to test more than twice for each clone, then it is desired that every two clones occur at most once in the same row or the same column, which is called the unique collinearity condition (UCC). The efficiency of UCC was shown by Barillot et al (1991,simulation) and proved theoretically by Berger et al in 2000 at Biometrics. So, corresponds to grid-block packing. We had better to have a design!!!2Z((#    < "@   5   B-:Keep Moving! I ll catch you!!"    ( b Thank you for your attention. !t ZZZ,66 <P(&!    , 0` 33PP` 3333` ___MMM` 13` 333fpKNāvI` j@v۩ῑ΂H` Q_{>?" dd@,?n<d@ `7 `2@`7``2 n?" dd@   @@``PR    @ ` ` p>> f ^  ` (  ` ` <$" DA  ` Td" DA  ` <("U_ DA  ` T8d">& DA  ` N"P DA  ` <>"p DA  ` C xl>?d?"bUv DA   ` 6P> "U > P cN NN}/kGrjL#j_     ` 0 > "  > 0 cN NN}/kGr ,{Nd\ ,{ Nd\ ,{Vd\ ,{Nd\    ` 6> "@ > f*    ` 6> "@`  > h*    ` 6> "` > h*  B ` s *޽h ? 3333  Blends   0 8 0 d (  dT + d "+bb P@ d# "Dwoh d s *"PP d Bd" P@bb P 0  d# "Nyh d s *"P   d Bd"P 0 z  d <" a*h  d s *"  d  f?d?"+)  d <& ?"pP & P cN NN}/kGrjL#j_     d 0Ծ& " `   & R cN NN}/kGroRjL#j_  d 6& "`p  & j*   d 6& "`p  & l*    d 6& "` & l*   B d s *޽h ? 3333s  0 0*(  r  S pA `  A x  c $A `jY A H  0޽h ? @AvffJffy___PPT10Y+D='  = @B +  0 `(    S 4h `< i<$ 0  h   c $5h `<$ 0 h H  0޽h ? ___3̙3f3___PPT10.+tD' 8h= @B D' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*a%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*aD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*aD{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*a%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*aD' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*aD{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*"%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*"D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*"+p+0+0 ++0+0 +y  0 p0(  x  c $DIh `@  h x  c $Jh ` @ h H  0޽h ? @AvffJffy___PPT10Y+D='  = @B +y  0 0(  x  c $p]h `U  h x  c $H^h `u h H  0޽h ? @AvffJffy___PPT10Y+D='  = @B +  0  (    c $h `U<$D 0  h   c $h `I<$0 h H  0޽h ? @AvffJffG ? ___PPT10 .+T,D ' h= @B DB ' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+v4 ,0B*O3> B<*D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*i%(D' =+v4 ,0B*O3> B<*i+p+0+0 ++0+0 +  0 '(  x  c $мh `U  h r  S xh `P h  l 0    #"s   # <Sh?|   c9<   @` " <h?`|   c6<   @` ! <Lh?0| `  c3<   @`   <h?6 |  c8<   @`  <|h?`6 |  c5<   @`  <?06 `|  c2<   @`  <? 6  c7<   @`  <?` 6  c4<   @`  <$?0 `6  c1<   @``B % 01 ?06 6 `B & 01 ?0| | `B ) 01 ?` ` `B * 01 ?  fB $ 61 ?0  fB ( 61 ?0 0 fB + 61 ?  fB ' 61 ?0   l  P   #"PPP P  2 < ? p P  c4cw  @` 3 <l6? p  c2cw  @` 4 <|C? p  c9cw  @` 5 <LL? P p  c3cw  @` 6 <T? p  c7cw  @` 7 <x<? p  c5cw  @` 8 <H^? P  c8cw  @` 9 <q?   c6cw  @` : <Tz?   c1cw  @``B ; 01 ? P `B < 01 ? p P p fB = 61 ? P fB > 61 ?  `B ? 01 ?  `B @ 01 ?  fB A 61 ?P P fB C 61 ? P H  0޽h ? @AvffJffy___PPT10Y+D='  = @B +m  0 $(  r  S  `<7I   r  S D `P  H  0޽h ? @AvffJffy___PPT10Y+D='  = @B +  0 (    c $ `U<$D 0     c $ ` <$0  H  0޽h ? @AvffJffF>___PPT10.+T,D' |= @B DA' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*]%(D' =+v4 ,0B*O3> B<*]D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*]%(D' =+v4 ,0B*O3> B<*]D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+v4 ,0B*O3> B<*+p+0+0 ++0+0 +  0 (    c $ `U<$ 0     c $T ` <$0  H  0޽h ? @AvffJffF>___PPT10.+D' = @B DA' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*K%(D' =+v4 ,0B*O3> B<*KD' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*K%(D' =+v4 ,0B*O3> B<*KD' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*#%(D' =+v4 ,0B*O3> B<*#+p+0+0 ++0+0 +  0 (    c $ `U<$D 0     c $ ` <$0  H  0޽h ? @AvffJffF>___PPT10.+T,D' = @B DA' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*v%(D' =+v4 ,0B*O3> B<*vD' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*v%(D' =+v4 ,0B*O3> B<*vD' =%(D' =%(DG' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*@%(D' =+v4 ,0B*O3> B<*@+p+0+0 ++0+0 +:  0 a Y  (  x  c $ `U   x  c $H `    h  p   #"(( p    B? H p  b28,  @`   BD?h H p  b23,  @`   BD ?H h p  a5,  @`   B?H p  b12,  @`  B(? H  a9,  @`  B,$?h  H  a3,  @`  B-? h H  a1,  @`  B6? H  a0,  @``B  01 ?H H fB  6o ?p p fB  6o ? p `B  01 ? p `B  01 ?h h p `B  01 ?  p fB  6o ? p `B  01 ?h  fB   6o ? h fB  6o ?  H  0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 L0(  Lx L c $4B `U   x L c $B `   H L 0޽h ? 3333___PPT10i.Gn+D='  = @B +}  0 `$(  r  S  `<    r  S  `   H  0޽h ? 3333___PPT10i.0lk+D='  = @B +}  0 $(  r  S  `   r  S x `   H  0޽h ? 3333___PPT10i.`+D='  = @B +}  0 p$(  r  S $ `U   r  S l `   H  0޽h ? 3333___PPT10i.[m+D='  = @B +  0 P n(   x   c $W `U   r   S tX `@`  <p 0 H   #"" Jj    <hM? H ^17  @`   <X??@  H ^45  @`   <l[? @ H ^58  @`   <v? H ^76  @`   <P?   ^40  @`   <Ї?@   ^67  @`   <P? @   ^74  @`   <И?   ^14  @`   <P?v   ^60  @`   <Щ?@ v   ^28  @`   <P?v @  ^13  @`   <к?v   ]9  @`   <P?0 v  ^11  @`   <?@ 0 v  ]3  @`   <P?0 @ v  ]1  @`   <?0 v  ]0  @`fB   6o ?0 0 `B   01 ?v v `B   01 ?  `B   01 ?  fB   6o ?HHfB   6o ?0 H`B   01 ?0 H`B   01 ?@ 0 @ H`B   01 ?0 HfB   6o ?0 HH   0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +'  0 &&`;f$x&(  $x $ c $ `=   r $ S  `P P  8p P ` C f$ #"" 0` C $ <?` C ]1  @` $ <0?C ]7  @` $ < ?C ^10  @` $ <h ?PC ^13  @` $ < ? `  ]6  @` $ < ?  ]3  @` $ <x% ?  ^15  @`  $ <- ?P  ]9  @`  $ <x6 ?q `  ^11  @`  $ <> ?q   ^14  @`  $ <xG ?q   ]2  @`  $ <O ?Pq   ]5  @` $ <xX ? ` q  ^12  @` $ <` ? q  ]8  @` $ <xi ? q  _4  @` $ <q ?P q  ]0  @`fB $ 6o ?P `  `B $ 01 ?Pq ` q `B $ 01 ?P ` `B $ 01 ?P` fB $ 6o ?PC` CfB $ 6o ?P PC`B $ 01 ? C`B $ 01 ? C`B $ 01 ? CfB $ 6o ?`  ` Cp   ( N$ #"" ( ;$ <D~ ?p( ]1  @` :$ < ? p( ]5  @` 9$ < ?  ( ]8  @` 8$ <l ?  ( ^15  @` 7$ < ?p  ]4  @` 6$ < ? p ]3  @` 5$ <4 ?  ^13  @` 4$ < ?  ^11  @` 3$ < ?pV   ]9  @` 2$ < ? V p  ^12  @` 1$ <L ? V  ]2  @` 0$ < ? V  ]7  @` /$ < ?p V  ^14  @` .$ <( ?  pV  ^10  @` -$ << ?  V  ]6  @` ,$ <!?  V  ]0  @``B <$ 01 ?   `B =$ 01 ? V V `B >$ 01 ?  `B ?$ 01 ? fB @$ 6o ? ((`B A$ 01 ?  V `B B$ 01 ?  (`B C$ 01 ?  (`B D$ 01 ?p p(fB E$ 6o ? (fB G$ 6o ? V (fB I$ 6o ?   H $ 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 p((  (x ( c $! `U  ! r ( S |P  `@ ! X ( 0PG H ( 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +s  0 ,*(  ,x , c $)! `U  ! r , S *! ` ! H , 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +y  0 00(  0x 0 c $|7! `U  ! x 0 c $T8! `  ! H 0 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 )4q(  4x 4 c $E! `U  ! r 4 S F! `P ! ?p P` ` )4 #""^{ 4 <TP!?\ h` _183  @` 4 <X!?@ h\  _110  @` 4 <Ta!?0 h@  _150  @` 4 <i!?Ph0  ^82  @` 4 <Tr!?\ `h ^62  @` 4 <z!?@ \ h _131  @` 4 <T!?0 @ h ^72  @`  4 <ԋ!?P 0 h ^35  @`  4 <T!?\ `  ^39  @`  4 <Ԝ!?@ \  ^25  @`  4 <T!?0 @  ^14  @`  4 <ԭ!?P 0  ]5  @` 4 < !?\ ` `  ]7  @` 4 <X!?@ ` \  ]3  @` 4 <4!?0 ` @  ]1  @` 4 <(!?P` 0  ]0  @`fB 4 6o ?P` `` `B 4 01 ?P ` `B 4 01 ?P ` `B 4 01 ?Ph`hfB 4 6o ?P`fB 4 6o ?P` P`B 4 01 ?0 ` 0 `B 4 01 ?@ ` @ `B 4 01 ?\ ` \ fB 4 6o ?`` `H 4 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 #8|(  8x 8 c $! `U  ! x 8 c $! `  ! Dp P P #8 #""P P 8 <!? P ]7  @` 8 <!?  P _221  @` 8 <!? P ^70  @` 8 <!?P ^46  @` 8 <"? P  ^83  @` 8 <@!? P  _155  @` 8 <"?P  ^17  @`  8 <@"?P  ^20  @`  8 <4("? P  ]6  @`  8 <0"? P  ]5  @`  8 <49"? P  ]4  @`  8 <A"? P  ]3  @` 8 <4J"? P   ]2  @` 8 <R"? P  ]1  @` 8 <4["?P  ]0  @` 8 <@!"?P   h  @`fB 8 6o ?P P `B 8 01 ?  `B 8 01 ?P P `B 8 01 ?fB 8 6o ?PPfB 8 6o ?P P`B 8 01 ?P P`B 8 01 ? P P`B 8 01 ? P PfB 8 6o ?P PH 8 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 @(  @ @ c $e" `U<$ 0  "  @ c $z" ` <$ 0 " H @ 0޽h ? ___3̙3f3OG___PPT10'.+tD' }"= @B DJ' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*@%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*@D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*@D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*@@%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*@@D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*@@D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*@@%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*@@D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*@@+p+0+@0 ++0+@0 +y  0 <0(  <x < c $" `U  " x < c $\" `  " H < 0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0  t((  tr t S " `Z*  " r t S " `  "  t Z " ??dg rResolvable Packing" F(  H t 0޽h ? 3333___PPT10i. d+D='  = @B +`  0 wo0!x(  xr  x S " `U  " x x c $" `I  " R x C *ABD00028_P d{ pp  x3 #""t  " x <"? p  `14  @` x <,"?@ p  `16  @` x <"? @ p  `15  @`  x <L"? p  `13  @`  x <"?p  `12  @`  x <L"?@ p  `11  @`  x <"?p@  `10  @`  x <L"?p  _9  @` x <"?p _7  @` x <$?@ p _6  @` x < $?@ p _8  @` x <\$?p _5  @` x <$?p _4  @` x <\#$?@ p _3  @` x <+$?p@  _2  @` x <\4$?p _1  @`fB x 6o ?pp`B x 01 ?`B x 01 ?pp`B x 01 ?  fB x 6o ?p p fB x 6o ?pp `B x 01 ?pp `B x 01 ?@ p@ p `B x 01 ?pp fB x 6o ?pp H x 0޽h ? 3333___PPT10i."` +D='  = @B +  0 P'4P(  r , S 4A `U  A x  c $A `I  A    |  1 #"MLM   A  <&A?x6 |  ]8  @`  <(A?6 x|  ]7  @`  <2A? 6 |  ^ 6  @`  <x@A?x6  ]5  @`   <`3A?x6  ]4  @`   <RA? 6  ^ 3  @`   <XKA?x ]2  @`   <|cA?x ]1  @`   <\A?  _0  @`fB  6o ? `B  01 ? `B  01 ? 6 6 fB  6o ? | | fB  6o ?  | `B  01 ?| `B  01 ?xx| fB  6o ?|    V ( 4 #"#V ( A  <XxA?( ^17  @`  <A?#( ^16  @`  <8A? #( ^15  @`  <A?  ^14  @`  < A?#  ^13  @`   <pA? # ^12  @` ! <A?V   ^11  @` " <A?#V   ^10  @` # <8A? V #  ]9  @`fB $ 6o ? V V `B % 01 ?  `B & 01 ? fB ' 6o ? ((fB ( 6o ? V (`B ) 01 ?#V #(`B * 01 ?V (fB + 6o ?V (H  0޽h ? 3333___PPT10i.sn+D='  = @B +  0 (    c $lL$ `U<$D 0  $   S +B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D' =%(D' =%(DX' =A@BBB B0B%(D' =1:Bvisible*o3>+B#style.visibility<*I%(D' =-6B+checkerboard(across)*<3<*ID' =%(D' =%(DX' =A@BBB B0B%(D' =1:Bvisible*o3>+B#style.visibility<*If%(D' =-6B+checkerboard(across)*<3<*IfD' =%(D' =%(DX' =A@BBB B0B%(D' =1:Bvisible*o3>+B#style.visibility<*f>%(D' =-6B+checkerboard(across)*<3<*f>D' =%(D' =%(DX' =A@BBB B0B%(D' =1:Bvisible*o3>+B#style.visibility<*>P%(D' =-6B+checkerboard(across)*<3<*>P+p+0+0 ++0+0 +  0  (    c $l$ `U<$D 0  $   c $m$ `<$ 0 $ H  0޽h ? ___3̙3f3C;___PPT10.+%wD' X$= @B D>' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*Du' =%(D' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?RCBBCB#ppt_wB*Y3>B ppt_w<*D' =+4 8?RCBBCB#ppt_hB*Y3>B ppt_h<*D' =+K4 8?CBB#ppt_x+(cos(-2*pi*(1-$))*-#ppt_x-sin(-2*pi*(1-$))*(1-#ppt_y))*(1-$)CB?B*Y3>B ppt_x<*D' =+K4 8?CBB#ppt_y+(sin(-2*pi*(1-$))*-#ppt_x+cos(-2*pi*(1-$))*(1-#ppt_y))*(1-$)CB?B*Y3>B ppt_y<*Du' =%(D' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*5%(D' =+4 8?RCBBCB#ppt_wB*Y3>B ppt_w<*5D' =+4 8?RCBBCB#ppt_hB*Y3>B ppt_h<*5D' =+K4 8?CBB#ppt_x+(cos(-2*pi*(1-$))*-#ppt_x-sin(-2*pi*(1-$))*(1-#ppt_y))*(1-$)CB?B*Y3>B ppt_x<*5D' =+K4 8?CBB#ppt_y+(sin(-2*pi*(1-$))*-#ppt_x+cos(-2*pi*(1-$))*(1-#ppt_y))*(1-$)CB?B*Y3>B ppt_y<*5+p+0+0 ++0+0 +^  0 0.5(  x  c $$ `U  @ x  c $Ā$ `  $ p pp  - #""LLLLP `p   < $?@ p  T  @`  <ܒ$? @p  T  @`  <Ԅ$?@ p  T  @`  <x$? @ p  T  @`  <$?@ p  T  @`  <|$? @p  T  @`  <p$?@p  T  @`  <$? p@  T  @`  <\$?@ p  T  @`  <D$?p@  T  @`  <$?@p  T  @`  <8$?p@  T  @`  <$$?@p T  @`  <$? @p T  @`  <D&?@  p T  @`  < &?@ p T  @`  <&?@p T  @`  <p&?@p T  @`  <"&?@p T  @`   <&? p@ T  @`   <2&?@ p  T  @`   <:&?p@  T  @`   <,&?@p T  @`   <pK&?p@ T  @`fB ! 6o ?pp`B " 01 ?`B # 01 ?pp`B $ 01 ?  fB % 6o ?p p fB & 6o ?pp `B ' 01 ?@p@p `B ( 01 ?pp `B ) 01 ?@ p@ p `B * 01 ? p p `B + 01 ?@p@p fB , 6o ?pp RB / s *D` RB 0@ s *D` P`` RB 2 s *DP` 3 <P& x  T"   4 <V&&F b "   5 < \&&6  F  V  H  0޽h ? ___3̙3f3   0 @\(  x  c $*& `U  & x  c $0& `  & d pp    #"    <p&?pp  T  @`fB  6o ?ppfB  6o ?p p fB  6o ?pp fB   6o ?pp RB  s *D  RB  s *D RB  s *D@ 0RB  s *D@ @ @ 0  0t& Gp    0x&  Gp    <|&: ZZ Gp    0&@ `  Gp  H  0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +  0 P(    c $4& `U<$ 0  &   c $~& ` <$ 0 & H  0޽h ? ___3̙3f3UM___PPT10-.+tD' &= @B DP' = @BA?%,( < +O%,( < +D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*\%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*\D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*\D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*\%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*\D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*\D{' =%(D#' =%(D' =A@BBBB0B%(D' =1:Bvisible*o3>+B#style.visibility<*%(D' =+4 8?dCB0-#ppt_w/2BCB#ppt_xB*Y3>B ppt_x<*D' =+4 8?\CB#ppt_yBCB#ppt_yB*Y3>B ppt_y<*+p+0+0 ++0+0 +  0 pP(  pr p S D& `U  &  p ^A  `job-002 &H p 0޽h ? 3333___PPT10i.9+D='  = @B +y  0 0(  x  c $@& `U  & x  c $& `  & H  0޽h ? ___3̙3f3y___PPT10Y+D='  = @B +rƒpacH!`<+&(D+=1"3C. VXb[]rr>0di2yBpaA#z'FH1Oh+'0 px    $ 0<D4Some Applications of Graph-Packing on Group Testinghlfuuser45Microsoft PowerPoint@@O@@@u@ ߹WGhg  ,V'&" WMFCH <8?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root EntrydO)Pictures ECurrent UserSummaryInformation(GPowerPoint Document(#GDocumentSummaryInformation8