EEEEC

2. Let A be an infinite set. Prove that for each k(> 1) coloring
of the elements in (?) there exists a monochromatic (1;)
where T is also an infinite set.

By induction on r

r=1: clearly true.

Suppose r<k the assertion is true (r > 2)
Now, consider r=k:

A
Let ¢ be a k-coloring of ( i j and A, = A,.

Letx, € A, and B, = A, \ {x,}

Bl
VS, e
r-1

Define o (S,) = 0(S, U {x,})
Then, since S, U {x,} isr-setin A and ™ (S,) = ¢(S, U {x,})

B
@ js k-coloring of L,
4 g (r-l

A,

So, by induction , there exists A, in B, s.t ( 1] is monotonic.

Similaly, letx, € A, and B, = A \{x,}

VSZE( zj
r-1

Define ¢(2)(SZ) =p(S,v {Xz })

B
Then, since S, U {x,} isr-setin A, and ¢ (S,) = 0(S, U {X,}),9? is k-coloring of (r ZJ.

A,

So, by induction , there exists A, in B,, s.t ( 1
r_

j IS monotonic.

is monotonic i e N.
r-1

Using the same process , we have that [

Furthermore, A, oA, DA, D

Since we only use k colors , by pigeonhole principle, there exists one colors which occurs in

A A
[ '11)[ 'le,---,(infinite many),where A, DA, DA, D
r_ r_ 1 2 3



LetT:{xi1 XX --o}Tisinfinite.

Then , we have the following results.

)
: (A A
Since we use the same color in : and A, oA, DA, D,
r-1)\r-1 ' ? ’
and r-1 set of T are the same color.
(2)

e, ! iy ! r’

€2

For any r-set {xi v X X, X }ofT, C,<C,<---<C
a Cr1 Cr

¢({Xiq}U{Xiczl Xo T Xicr})=§0(i“)({xicz, X, o Xic,})' where {xicz, X, o Xicr}e(rA_ch'

Thus, by (1), (2) ,any r-set of are the same color

T
—>( ] is monotonic, where T is infinite.
r



FIL R
3. Find a deterministic algorithm to prove that the domination number of a graph G
nl+Ino(G)+1)

D(G) < 0(G)++1

Let G be a graph with 6(G) =k. Given Sc V(G).

Let U be the set of vertices not dominated by S.

Claim: There exists some vertex ye V (G) and y ¢ S such that y dominates at least

U [(k+1)
n

vertices of U.

Proof of claim: -~ 5(G)=k and U cV(G) ;I NIVI[ = [U](k+D).
V

SINMI |y ey

.. _ . velU

SAG)=n. .. 1G\S | = n
D IN[V]|

veU

VR + % ) T 7o 6 T l
|G\S | -1 14 each 7 G\S piv vertex Ffzée T2 N[VIH(veU)

. k+1) ..
Hence there exists some vertex y eV (G)(y ¢ S) appears at least Mtlmes.
n
Method: We select a vertex repeatly that dominates the most of the remaining
undominated vertices.

Note: When r undominated vertices remain, after one step of selection, there remain at

k+1 . .
most r(1—;) undominated vertices.
n

*
After W steps (from S =), the number of undominated is
+
k+1 n*In(k+1) (—(k+1)) n*In(k+1)

n(l_T) k+1 <N [e n ] k+1 (1_ p<e—p)

_ e D _ n
k+1

The number of vertices of a dominating set=(number of vertices we select)+(number
of undominated vertices).



n*In(k +1)

Hence after steps, we form a dominating set of size at most

n*In(k+1)+ n  nd+Intk+1) nl+Ins(G)+1)
k+1 k+1 k+tl S5G)++1




4. Prove that almost all graphs are 100-connected.

Proof. .

Claim 1 : For every constant p € (0.1) and ¢, € N, almost all graphs
G* has the property F,; is the property that for any disjoint vertex sets
[7and W with |U| =7 and |V| = j, a vertex v & [V U W that is adjacent
to all the vertices of [ but to none of vertices in W

Proof of claim 1

The probability that v € V(G)~ (U7 U W) is adjacent to U but not to W
is

iod

'y where g = (1 — p)

Hence, the probability that no suitable v exists for these {7 and W is
(1 - i)
Since the number of < 7, W = pairs is

( ) ( i é) G - !é)!i! (n {—Ré_—?:lu:

1.
T ilm—i— )l
<"
T (n—i— )
< ?1i+‘j

S0 the total probability is less than

nti(1 - ptg )"t =t (E)”‘_""_J for some k > 1
niti

= — — 00 asn— oo
A.ﬂ—z—_','




Claim 2 : For every constant p € (0,1) and k& € M, almost all graphs are
k-connected.
Proof of claim 2
Let i =2 and j =k — 1. Let & be a graph with property F, ; and give W
be an arbitrary set of V(G) and |W| = k—1. Then ¥z.y € V(&) W, then
either r i1s adjacent to y or r and ¥ have a common neighbor. Therefore,

W is not a vertex cut, then (& is k-connected. By claim 1,
almost graphs G has property F;; and |G| = k + 2

Therefore, almost all graphs are k-connected.

By claim 2, we know almeost all graphs are 100-connected.



3

6. Disprove Hajos conjecture (in vertex coloring). U 55 1

Hajos Conjecture Every k-chromatic graph contains a subdivision
of Kk

We want to give counterexamples to disprove it. Thick edges below
indicate that every vertex in one circle is adjacent to every vertex in
the other.

G- e e @ @

Claim: (1). x(G) = 7 but G has no K;-subdivision.
(2). x(H) =8 but H has no Kg-subdivision.

(1). Let G = Gy = C5[K3, Ko, K3, Ko, K3).

Because of the construction, we can’t take two vertices from the same
circle or adjacent circles in an independent set. Hence the independence
number a(G) = 2. = x(G) > % =B =65 = x(G)>7.

Since we can use colors 123,45, 267, 14,567 in the successive cliques of
G, x(G) < 7. Thus, x(G) =T.

Claim: G has no K7-subdivision.
Suppose GG has a K7-subdivision. Since there are at most six vertices in
any two adjacent circles, there exists two vertices u, v of degree 7—1 = 6

in nonadjacent circles.



(Casel) One of u,v is chosen from a circle of size 3. Since u,v are
vertices of degree six in the K7-subdivision, there must be six pairwise
internally disjoint u — v paths in G. This is impossible, since u, v has a
separating set of size 5. It contradict to the existence of Kr;-subdivision.
Ex:

If u,v are in circles 2 and 5, then the union of circle 1 and 4 is a sepa-
rating set of u, v of size 5.

(Case2) u,v are chosen from the circles of size 2.

W.L.O.G. assume u is in the circle 2 and v is in the circle 4.

If one of the other five vertices of degree 6 in the K7-subdivision is in
the circle 1 or in the circle 5, then we go back to casel(—+«).

= The vertices of degree 6 in the K7-subdivision are the vertices in
circle 2,3,4.



= The four internally disjoint paths cinnected the circle 2 and circle 4
must use the circle 1 and 5. (M path Z7EK; EREM L degree 2
HIEE, FTLA—E HEefkd circle 1 and circle 5).

This is impossible, since there are only three internally disjoint paths.
Hence G has no Kr-subdivision.

= ( is a counterexample of Hajos conjecture.

Use the same argument we have H is also a counterexample of Hajos

conjecture.



7. For every positive integer K > 3, prove that there exists a graph G

such that g(G)x(G) > Kk=2.

Proof: Fix .0 < e < i .

let p =n®L

Let X(H) =the number of cycles of length at most k.
Since the number of cycles of length k' is equal to n—k, where r'=n(n-1)(n-2)...(n-k’+1)..

(A n(n-1)...(n-k’+1)FEEEFE K'-cycle, {H—{E k’-cycle & 2Kk {[f#—1EHY cycle).

k /
EX) = Zios o P* < Xisn'p! (np=nn*! =n®>1)
~ S (np)k = —(k—2)(np)k-
By Markov’s Inequality
E(X)

p(X23) S5 < (k= 20" pk = (k= 2n* 0k = (k= 20k,

Since € < E thenke > 1 Then (k—2)n¥¢"1 - Qasn — oo.

=> lim, e P (X = g) =0

In’s.tVn >n’ p(X > g) < %

By Lemma Let k>0 be an integer and let p=p(n)> (6kInn)n~! for large n.
Then lim,_ . p (a > Zk) =0

Proof Lemma: For n>r > 2.

r(r—1) r(r-1)

pla=n) < (N1-pd=(NA-p) 7 <n'(l-p)

Since e ?>1—p.
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—pbr+p

(r-1) r-1
(n(1-p) 7 ) < (n(e®)z)" =(ne z )" Letp=(6klnn)n™" r=—
3 p\T -3 p\T -1 py\T -1 p
:(ne_51““+5) = (nnTeE) = (nTef) Since (nTef) <1

“1p
<nzez - (0 asn — oo,

=>p(a2%)—>0asn—>oo.
Since n® ! =n®n~! > (6kIlnn)n~? forlargen,
Then p (a = 1) < % for large n.

2k
Then exists a graph H, |H|=n

The number of cycles of length at most k at most g and a(H) < %

Construct a new graph G

£ H fg—{ERER AR k Y cycle delete —{f %

Then g(G)>k and |G| = 2

x(G) = 6l > 2z /2 =k
a@ T oal) T P/

Then x(G)g(G) > kk = k2.



8. Let X(G)= r+1, then H notin T,(n) (If H <T,(n), then X(G)<r)
= ex(n; H) =T (n)|.
Since H <K, for somet, [T, (n)]|<ex(n; H)<|T,(n)]|+en?

(By Erdos and stone's Theorem ex(n ; H) <|T,(n)[+&n®)
[T M exniH) _ [T ()]

@ | @ IITr(rE)%Ij +2§j

n n(n-1)
2

[T, (n)] L 2 ([H|z1=|H|=n>2=> ! <2)
n 1 1
Ui
2 n n

Tl , .
n

(zl

Claim lim ” (n)|| =1-—

n—o n r
6]
e
_(n) _rg(gr=r) _(n) n(n-r)
2 or (2 or

(Mgt nr-1)
_(Zj(l r)Jr 2r

| (G )||_II Mt (r—l)n>< 2,1
“% [ j N0 2r n(n-1) r
:>I|m 1—l: r-1_2X(G)-2

n—>o r ro N(G)-1
2



9. Prove that the diameter of a connected graph G is less than the number

pf :

of distinct eigenvalues of G.

Let A be the adjacency matrix and r be the of distinct eigenvalues.

Let them be Ay, As,... A

Then m(x):f[(x—ﬂi) is the minimal polynomial of A, that is, m(A)=0.
=1

This implies that some linear combinations of I, A, A%, ..., A" are 0, and
I, A, A® ..., Alare linearly independent for t <.

Now we need to show that I, A, A?, ..., A¥are linearly independent
when k < diam(G).

It suffices to show that A* is not a linear combinations of

I, A, A% ..., A for all k < diam(G).

Choose v;,v;eV(G) suchthat d(v;,v;)=k.

Then this implies that A%(i, j)>0 and A!(i, j)=0 for k < diam(G).
Therefore, A is not a linear combinations of I, A, A?, ..., A** for all
k <diam(G).

Thus I, A, A ..., A¥are linearly independent when k < diam(G).

Hence diam(G) <r. []



#10 Prove that if G is a graph in each any two distant vertices have exactly one

common neighbor, that A(G) =|G|-1.

Pf. Case 1: G is regular.

Since G is regular, and each any two distant vertices in G have exactly one
common neighbor , then it is easy to see that 1= u=1.

By theorem : If G is strongly regular with n vertices and parameters k, A, z, then

the two numbers below are nonnegative integers i(nlJr (n—1)(/,21—}t)—2k .
V= 2)7 +4(k— p)

We know that %[n—li K jeD = LeD =k=2.

J(k-1) V(k-1)

= K, is the only 2-regular graph satisfying the condition, and A(K3):|K3| -1
Case 2: G isnotregular.
b, U T ww,veV(G), [Nw)AN(v)|=1 = forbidsC,.

Ifw does not adjectto v in G let{u}= N(w) " N(v).

And let{a}=N(@u) " N(v), {b}=N(w) N(u).

Vx e S, where S is N(v) -{u, a} has common neighbor f (x) with w.

If f (x) =b, {b,u,v, x} obtain C,.

If f(x)=w, {w,Xx,v,u}obtain C,.

Iff(x)=f(x"), {x,v,x, f(x)}obtainC,, x'eS ,x"'#X.
=d(w)>d(v).

Similarly condition =d(v)>d(w).

=d(w)=d(v)

Since G is not regular, 3x,y eV (G), s.t. d(x) #d(y).

i 2 If d()#A(Y) Spyame X~ ¥, andlet {Zh=N()AN(Y).

n Since d(z)can’t equal tod(x) andd(y)at the same time
(d(x)=d(y)), W.L.O.G., let d(z)=d(y).

If 3peV(G), pe N(y),then d(p)=d(y)=d(x),and
d(p)=d(y) #d(z) = p~; xand p ~¢ Z

=obtainC, , {p,X,y,z} -><-

= p(y)=n-1.

By casel and case2 we get A(G)=|G|-1.
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