2. Let A be an infinite set. Prove that for each $k(\geq 1)$ coloring of the elements in $\binom{A}{3}$, there exists a monochromatic $\binom{T}{3}$ where T is also an infinite set.

By induction on r

r=1: clearly true.

Suppose r<k the assertion is true $(r \ge 2)$

Now, consider r=k:

Let φ be a k-coloring of $\begin{pmatrix} A \\ r \end{pmatrix}$ and $A_1 = A_0$.

Let $x_1 \in A_0$ and $B_1 = A_0 \setminus \{x_1\}$

$$\forall S_1 \in \begin{pmatrix} B_1 \\ r-1 \end{pmatrix}$$

Define $\varphi^{(1)}(S_1) = \varphi(S_1 \cup \{x_1\})$

Then, since $S_1 \cup \{x_1\}$ is r-set in A and $\varphi^{(1)}(S_1) = \varphi(S_1 \cup \{x_1\})$

$$\varphi^{(1)}$$
 is k-coloring of $\binom{B_1}{r-1}$.

So, by induction , there exists A_1 in B_1 , s.t $\begin{pmatrix} A_1 \\ r-1 \end{pmatrix}$ is monotonic.

Similarly, let $x_2 \in A_1$ and $B_2 = A_1 \setminus \{x_2\}$

$$\forall S_2 \in \begin{pmatrix} B_2 \\ r - 1 \end{pmatrix}$$

Define $\varphi^{(2)}(S_2) = \varphi(S_2 \cup \{x_2\})$

Then, since $S_2 \cup \{x_2\}$ is r-set in A, and $\varphi^{(2)}(S_2) = \varphi(S_2 \cup \{x_2\}), \varphi^{(2)}$ is k-coloring of $\binom{B_2}{r-1}$.

So, by induction , there exists A_2 in B_2 , s.t $\begin{pmatrix} A_2 \\ r-1 \end{pmatrix}$ is monotonic.

Using the same process , we have that $\binom{A_i}{r-1}$ is monotonic $i \in N$.

Furthermore, $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$

Since we only use k colors, by pigeonhole principle, there exists one colors which occurs in $\binom{A_{i_1}}{r-1}$, $\binom{A_{i_2}}{r-1}$, \cdots , (inf inite many), where $A_{i_1} \supseteq A_{i_2} \supseteq A_{i_3} \supseteq \cdots$

Let
$$T = \{x_{i_1} \quad x_{i_2} \quad x_{i_3} \quad \cdots \}$$
 T is infinite.

Then, we have the following results.

(1)

Since we use the same color in
$$\binom{A_{i_1}}{r-1}$$
, $\binom{A_{i_2}}{r-1}$, \cdots , and $A_{i_1}\supseteq A_{i_2}\supseteq A_{i_3}\supseteq \cdots$,

and r-1 set of T are the same color.

(2)

For any r-set
$$\{x_{i_{c_1}}, x_{i_{c_2}}, x_{i_{c_3}}, \cdots x_{i_{c_{r-1}}}, x_{i_{c_r}}\}$$
 of T, $c_1 < c_2 < \cdots < c_r$,

$$\varphi(\left\{x_{i_{c_1}}\right\} \cup \left\{x_{i_{c_2}}, x_{i_{c_3}}, \cdots x_{i_{c_r}}\right\}) = \varphi^{(i_{c_1})}(\left\{x_{i_{c_2}}, x_{i_{c_3}}, \cdots x_{i_{c_r}}\right\}), \text{ where } \left\{x_{i_{c_2}}, x_{i_{c_3}}, \cdots x_{i_{c_r}}\right\} \in \begin{pmatrix} A_{i_{c_2}} \\ r-1 \end{pmatrix}.$$

Thus, by (1), (2), any r-set of are the same color

$$\rightarrow \begin{pmatrix} T \\ r \end{pmatrix}$$
 is monotonic, where T is infinite.

3. Find a deterministic algorithm to prove that the domination number of a graph G $D(G) \le \frac{n(1 + \ln \delta(G) + 1)}{\delta(G) + 1}.$

Let G be a graph with $\delta(G) = k$. Given $S \subseteq V(G)$.

Let U be the set of vertices not dominated by S.

Claim: There exists some vertex $y \in V(G)$ and $y \notin S$ such that y dominates at least $\frac{|U|(k+1)}{n}$ vertices of U.

Proof of claim:
$$:: \delta(G) = k$$
 and $U \subseteq V(G)$ $:: \sum_{v \in U} N[v]| \ge |U|(k+1)$.

$$\therefore \Delta(G) = n. \quad \therefore \frac{\sum_{v \in U} |N[v]|}{|G \setminus S|} \ge \frac{|U|(k+1)}{n}.$$

$$\frac{\displaystyle\sum_{v\in U} |N[v]|}{|G\setminus S|}$$
:平均 each 在 G\S 的 vertex 會落在幾個 N[v]裡($v\in U$)

Hence there exists some vertex $y \in V(G)(y \notin S)$ appears at least $\frac{|U|(k+1)}{n}$ times.

Method: We select a vertex repeatly that dominates the most of the remaining undominated vertices.

Note: When r undominated vertices remain, after one step of selection, there remain at most $r(1-\frac{k+1}{n})$ undominated vertices.

After
$$\frac{n*\ln(k+1)}{k+1}$$
 steps (from S = \varnothing), the number of undominated is

$$n(1-\frac{k+1}{n})^{\frac{n^*\ln(k+1)}{k+1}} < n \left[e^{(\frac{-(k+1)}{n})}\right]^{\frac{n^*\ln(k+1)}{k+1}} (:1-p < e^{-p})$$

$$=n*e^{-\ln(k+1)}=\frac{n}{k+1}$$

The number of vertices of a dominating set=(number of vertices we select)+(number of undominated vertices).

Hence after $\frac{n*\ln(k+1)}{k+1}$ steps, we form a dominating set of size at most

$$\frac{n*\ln(k+1)}{k+1} + \frac{n}{k+1} = \frac{n(1+\ln(k+1))}{k+1} = \frac{n(1+\ln\delta(G)+1)}{\delta(G)+1}.$$

Prove that almost all graphs are 100-connected.

Proof. .

Claim 1: For every constant $p \in (0,1)$ and $i, j \in \mathbb{N}$, almost all graphs G^p has the property $P_{i,j}$ is the property that for any disjoint vertex sets U and W with |U| = i and |V| = j, a vertex $v \notin U \cup W$ that is adjacent to all the vertices of U but to none of vertices in W

Proof of claim 1

The probability that $v \in V(G) \setminus (U \cup W)$ is adjacent to U but not to Wis

$$p^i q^j$$
 where $q = (1 - p)$

Hence, the probability that no suitable v exists for these U and W is

$$(1 - p^i q^j)^{n-i-j}$$

Since the number of < U, W > pairs is

$$\binom{n}{i} \binom{n-i}{j} = \frac{n!}{(n-i)!i!} \frac{(n-i)!}{(n-i-j)!j!}$$

$$= \frac{n!}{i!(n-i-j)!j!}$$

$$\leq \frac{n!}{(n-i-j)!}$$

$$\leq n^{i+j}$$

So the total probability is less than

$$\begin{split} n^{i+j}(1-p^iq^j)^{n-i-j} &= n^{i+j}(\frac{1}{k})^{n-i-j} \quad \text{for some } k>1 \\ &= \frac{n^{i+j}}{k^{n-i-j}} \to 0 \quad \text{as } n \to \infty \end{split}$$

Claim 2 : For every constant $p \in (0,1)$ and $k \in \mathbb{N}$, almost all graphs are k-connected.

Proof of claim 2

Let i=2 and j=k-1. Let G be a graph with property $P_{i,j}$ and give W be an arbitrary set of V(G) and |W|=k-1. Then $\forall x,y\in V(G)\backslash W$, then either x is adjacent to y or x and y have a common neighbor. Therefore, W is not a vertex cut, then G is k-connected. By claim 1,

almost graphs G has property $P_{i,j}$ and $|G| \ge k+2$

Therefore, almost all graphs are k-connected.

By claim 2, we know almost all graphs are 100-connected.

Hajos Conjecture Every k-chromatic graph contains a subdivision of K_k .

We want to give counterexamples to disprove it. Thick edges below indicate that every vertex in one circle is adjacent to every vertex in the other.

Claim: (1). $\chi(G) = 7$ but G has no K_7 -subdivision.

(2). $\chi(H) = 8$ but H has no K_8 -subdivision.

(1). Let
$$G = G_7 = C_5[K_3, K_2, K_3, K_2, K_3]$$
.

Because of the construction, we can't take two vertices from the same circle or adjacent circles in an independent set. Hence the independence number $\alpha(G) = 2$. $\Rightarrow \chi(G) \geq \frac{|G|}{\alpha(G)} = \frac{13}{2} = 6.5$. $\Rightarrow \chi(G) \geq 7$.

Since we can use colors 123, 45, 267, 14, 567 in the successive cliques of G, $\chi(G) \leq 7$. Thus, $\chi(G) = 7$.

Claim: G has no K_7 -subdivision.

Suppose G has a K_7 -subdivision. Since there are at most six vertices in any two adjacent circles, there exists two vertices u, v of degree 7-1=6 in nonadjacent circles.

(Case1) One of u, v is chosen from a circle of size 3. Since u, v are vertices of degree six in the K_7 -subdivision, there must be six pairwise internally disjoint u - v paths in G. This is impossible, since u, v has a separating set of size 5. It contradict to the existence of K_7 -subdivision. Ex:

If u, v are in circles 2 and 5, then the union of circle 1 and 4 is a separating set of u, v of size 5.

(Case2) u, v are chosen from the circles of size 2.

W.L.O.G. assume u is in the circle 2 and v is in the circle 4.

If one of the other five vertices of degree 6 in the K_7 -subdivision is in the circle 1 or in the circle 5, then we go back to case1($\rightarrow\leftarrow$).

 \Rightarrow The vertices of degree 6 in the K_7 -subdivision are the vertices in circle 2,3,4.

 \Rightarrow The four internally disjoint paths cinnected the circle 2 and circle 4 must use the circle 1 and 5. (這四條 path 是在 K_7 上的邊加上 degree 2 的點, 所以一定只能經過 circle 1 and circle 5).

This is impossible, since there are only three internally disjoint paths. Hence G has no K_7 -subdivision.

 $\Rightarrow G$ is a counterexample of Hajos conjecture.

Use the same argument we have H is also a counterexample of Hajos conjecture.

7. For every positive integer $\,k\geq 3$, prove that there exists a graph G such that $\,g(G)\chi(G)>k^2$.

Proof: Fix $\epsilon . 0 < \epsilon < \frac{1}{k}$.

Let
$$p = n^{\epsilon - 1}$$
.

Let $X(H) \stackrel{\text{def}}{=} \text{the number of cycles of length at most k}$.

Since the number of cycles of length k' is equal to $\frac{n^{r'}}{2k'}$ where r'=n(n-1)(n-2)...(n-k'+1)...

(有 n(n-1)...(n-k'+1)種選擇 k'-cycle, 但每一個 k'-cycle 有 2k'個一樣的 cycle).

$$\begin{split} E(X) &= \sum_{k'=3}^k \frac{n^{k'}}{2k'} p^{k'} \leq \frac{1}{2} \sum_{i=3}^k n^i p^i \quad (np = nn^{\epsilon - 1} = n^\epsilon \geq 1) \\ &\leq \frac{1}{2} \sum_{i=3}^k (np)^k = \frac{1}{2} (k - 2) (np)^k. \end{split}$$

By Markov's Inequality

$$p\left(X \geq \frac{n}{2}\right) \leq \frac{E(X)}{n/2} \\ \leq (k-2)n^{k-1}p^k \\ = (k-2)n^{k-1}n^{(\epsilon-1)k} \\ = (k-2)n^{k\epsilon-1}.$$

Since $\epsilon < \frac{1}{k}$ then $k\epsilon > 1$ Then $(k-2)n^{k\epsilon-1} \to 0$ as $n \to \infty$.

$$=> \lim_{n\to\infty} p\left(X \ge \frac{n}{2}\right) = 0$$

$$\exists n' \text{ s. t } \forall n > n' \text{ p}\left(X \ge \frac{n}{2}\right) < \frac{1}{2}.$$

By Lemma Let k>0 be an integer and let $p=p(n) \ge (6k \ln n)n^{-1}$ for large n.

Then
$$\lim_{n\to\infty} p\left(\alpha \ge \frac{n}{2k}\right) = 0$$

Proof Lemma: For $n \ge r > 2$.

$$p(\alpha \ge r) \le {n \choose r} 1 - p^{{r \choose 2}} = {n \choose r} (1 - p)^{\frac{r(r-1)}{2}} \le n^r (1 - p)^{\frac{r(r-1)}{2}}$$

Since $e^{-p} \ge 1 - p$.

$$\begin{split} &(n(1-p)^{\frac{(r-1)}{2}})^r \leq (n(e^{-p})^{\frac{r-1}{2}})^r = (ne^{\frac{-pr+p}{2}})^r \quad \text{ Let p=}(6k\ln n)n^{-1}, r=\frac{n}{2k} \\ &= \left(ne^{-\frac{3}{2}\ln n + \frac{p}{2}}\right)^r = \left(nn^{\frac{-3}{2}}e^{\frac{p}{2}}\right)^r = \left(n^{\frac{-1}{2}}e^{\frac{p}{2}}\right)^r \quad \text{Since } \left(n^{\frac{-1}{2}}e^{\frac{p}{2}}\right) \leq 1 \\ &\leq n^{\frac{-1}{2}}e^{\frac{p}{2}} \to 0 \ \text{ as } n \to \infty. \\ &=> p\left(\alpha \geq \frac{n}{2k}\right) \to 0 \ \text{ as } n \to \infty. \end{split}$$

Since $n^{\varepsilon-1} = n^{\varepsilon} n^{-1} \ge (6k \ln n) n^{-1}$ for large n,

Then $p\left(\alpha \ge \frac{n}{2k}\right) < \frac{1}{2}$ for large n.

Then exists a graph H, |H|=n

The number of cycles of length at most k at most $\frac{n}{2}$ and $\alpha(H) \leq \frac{n}{2k}$.

Construct a new graph G

在 H 中每一個長度不大於 k 的 cycle delete 一個點

Then g(G)>k and $|G| \ge \frac{n}{2}$.

$$\chi(G) \ge \frac{|G|}{\alpha(G)} \ge \frac{\frac{n}{2}}{\alpha(H)} > \frac{n/2}{n/2k} = k$$

Then $\chi(G)g(G) > kk = k^2$.

8. Let $\aleph(G) = r+1$, then H not in $T_r(n)$ (If $H \leq T_r(n)$, then $\aleph(G) \leq r$) $\Rightarrow ex(n; H) \geq ||T_r(n)||$.

Since $H \le K_{(r+1)(t)}$ for some t, $||T_r(n)|| \le ex(n; H) \le ||T_r(n)|| + \varepsilon n^2$ (By Erdos and stone's Theorem $ex(n; H) \le ||T_r(n)|| + \varepsilon n^2$)

$$\frac{\left\|T_{r}(n)\right\|}{\binom{n}{2}} \leq \frac{ex(n; H)}{\binom{n}{2}} \leq \frac{\left\|T_{r}(n)\right\|}{\binom{n}{2}} + \frac{\varepsilon n^{2}}{\binom{n}{2}}$$

$$\leq \frac{\left\|T_{r}(n)\right\|}{\binom{n}{2}} + \frac{2\varepsilon n^{2}}{n(n-1)}$$

$$= \frac{\left\|T_{r}(n)\right\|}{\binom{n}{2}} + \frac{2\varepsilon}{1 - \frac{1}{n}} \quad (\left\|H\right\| \geq 1 \Rightarrow \left|H\right| = n \geq 2 \Rightarrow \frac{1}{1 - \frac{1}{n}} \leq 2)$$

$$\leq \frac{\left\|T_{r}(n)\right\|}{\binom{n}{2}} + 4\varepsilon$$

Claim
$$\lim_{n \to \infty} \frac{\left\| T_r(n) \right\|}{\binom{n}{2}} = 1 - \frac{1}{r}$$

Let
$$n = qr$$
, $||T_r(n)|| = \binom{n}{2} - r\binom{q}{2} = \binom{n}{2} - \frac{rq(q-1)}{2}$

$$= \binom{n}{2} - \frac{rq(qr-r)}{2r} = \binom{n}{2} - \frac{n(n-r)}{2r}$$

$$= \binom{n}{2} (1 - \frac{1}{r}) + \frac{n(r-1)}{2r}$$

$$\lim_{n \to \infty} \frac{\left\| T_r(G) \right\|}{\binom{n}{2}} = \lim_{n \to \infty} (1 - r) + \frac{(r - 1)n}{2r} \times \frac{2}{n(n - 1)} = 1 - \frac{1}{r}$$

$$\Rightarrow \lim_{n \to \infty} \frac{\left\| T_r(G) \right\|}{\binom{n}{2}} = 1 - \frac{1}{r} = \frac{r - 1}{r} = \frac{\aleph(G) - 2}{\aleph(G) - 1}$$

9. Prove that the diameter of a connected graph G is less than the number of distinct eigenvalues of G.

pf:

Let A be the adjacency matrix and r be the of distinct eigenvalues.

Let them be $\lambda_1, \lambda_2, \dots, \lambda_r$.

Then $m(x) = \prod_{i=1}^{r} (x - \lambda_i)$ is the minimal polynomial of A, that is, m(A)=0.

This implies that some linear combinations of I, A, A^2 , ..., A^r are 0, and I, A, A^2 , ..., A^t are linearly independent for t < r.

Now we need to show that $I, A, A^2, ..., A^k$ are linearly independent when $k \le \text{diam}(G)$.

It suffices to show that A^k is not a linear combinations of

 $I, A, A^2, ..., A^{k-1}$ for all $k \le diam(G)$.

Choose $v_i, v_j \in V(G)$ such that $d(v_i, v_j) = k$.

Then this implies that $A^k(i, j) > 0$ and $A^t(i, j) = 0$ for $k \le \text{diam}(G)$.

Therefore, A^k is not a linear combinations of I, A, A^2 , ..., A^{k-1} for all $k \le diam(G)$.

Thus I, A, A^2 , ..., A^k are linearly independent when $k \le diam(G)$.

Hence diam(G) < r.

#10 Prove that if G is a graph in each any two distant vertices have exactly one common neighbor, that $\Delta(G) = |G| - 1$.

Pf. Case 1: G is regular.

Since G is regular, and each any two distant vertices in G have exactly one common neighbor, then it is easy to see that $\lambda = \mu = 1$.

By theorem : If G is strongly regular with n vertices and parameters k, λ, μ , then

the two numbers below are nonnegative integers $\frac{1}{2} \left(n - 1 \pm \frac{(n-1)(\mu - \lambda) - 2k}{\sqrt{(\mu - \lambda)^2 + 4(k - \mu)}} \right)$.

We know that
$$\frac{1}{2} \left(n - 1 \pm \frac{k}{\sqrt{(k-1)}} \right) \in \square \implies \frac{k}{\sqrt{(k-1)}} \in \square \implies k = 2.$$

 \Rightarrow K_3 is the only 2-regular graph satisfying the condition, and $\Delta(K_3) = |K_3| - 1$.

Case 2: G is not regular.

$$\forall w, v \in V(G), |N(w) \cap N(v)| = 1 \implies \text{forbids } C_4.$$

If w does not adject to v in G, let $\{u\} = N(w) \cap N(v)$.

And let $\{a\} = N(u) \cap N(v)$, $\{b\} = N(w) \cap N(u)$.

 $\forall x \in S$, where S is $N(v) - \{u, a\}$ has common neighbor f(x) with w.

If f(x) = b, $\{b, u, v, x\}$ obtain C_4 .

If f(x) = w, $\{w, x, v, u\}$ obtain C_4 .

If f(x) = f(x'), $\{x', v, x, f(x)\}$ obtain C_4 , $x' \in S$, $x' \neq x$. $\Rightarrow d(w) \ge d(v)$.

Similarly condition $\Rightarrow d(v) \ge d(w)$.

$$\Rightarrow d(w) = d(v)$$

Since G is not regular, $\exists x, y \in V(G)$, s.t. $d(x) \neq d(y)$.

If
$$d(x) \neq d(y) \Rightarrow_{by \ above} x \sim_G y$$
, and let $\{z\} = N(x) \cap N(y)$.

Since d(z) can't equal to d(x) and d(y) at the same time $(d(x) \neq d(y))$, W.L.O.G., let $d(z) \neq d(y)$.

If $\exists p \in V(G)$, $p \notin N(y)$, then $d(p) = d(y) \neq d(x)$, and

$$d(p) = d(y) \neq d(z) \Rightarrow p \sim_G x \text{ and } p \sim_G z$$

$$\Rightarrow$$
 obtain C_4 , $\{p, x, y, z\}$ -><-

$$\Rightarrow p(y) = n-1.$$

By case 1 and case 2, we get $\Delta(G) = |G| - 1$.