ࡱ> $`!m:l8MT>?6$ j fxڝ[HQԊ ,͠ՃQᒉTD]`( "%ZYم| +„J"^* s|.EÜ"'<ƣ +4h]AWY X!sO7s,ZpF薘 %9ZaaH(fg85g؃[~*BO} 'YI?s2JƠm|&{bT>$!FHܣcxoCr M,f'J(/D2G=޷fNMvЅ=ta+ÇVlCO,/3%τ4!Cay(0H;.O,MJdX\h}V[k%IŭU F`^fN:^UAK%$ʀl_+#/)>J%^DyI7z.B2.`^OpPqZJ7gebz69ǹ,9P#[(:>"8+Xd +JϔT)ZLDI*H4_1kDب lWD`^ 6jHֱ45˾2+_n8$ 'XwC(PNG  IHDRSѓsBITOPLTEkkk{{{9s{{Z99ks!ZcRJ{Zss))1Jcsk{BJZ{s)ckcsZc΄JsR9R9ZJ{ZkB!9RBk9k!B)R9sB9c{RZ{B9)ckZ9{!R)ksZ!1B!B!RskZB1s!c){cRJs9Bk1)sR{!cZ!sJcB9R1cJ9)cssk)R!JZk{{k{kZkZBRB)9{rtRNS@fbKGD IDATx{H.\4yg{̜==CϬp81(Pa R%n_odlfW\WEFd 躿:xs<lk7./YKxzp`9/oM҇>J> y}x7v~WF.;׵?*MommM[^.S)wްp&Mm{kBӀ==sw~ۯ6}tϮ"_>>\V.smڪu][o뢮 {y2 &[m;<knoM u=qc4^|h07wz;xVaM[ӭI|z8.r4}J|ڵg5J/S߾>2E俪X˒]ebr0x\cwnt_~r$w 2rsy'Ͼ8k"k(Һ0j%4o|U;se)~n.W.!\N`og|ttwS[ܞ+Sv^=qc ԻAvjwwew3q5jE䏱&8ف!?{E ̾wmkDCIm6Dȍm,bc_9JxR ;aL8/s>'OSN?rgHBme}2J,D uwwܽ>t&rrA")`D[8ҷ vFwKr퐊99>ޟ9Lp<FÝ%޼OS=/wiumvTs*T`&gޛ rt#Ɩ#FLB\nc[M ߽O*w&kh>SB^?Quy:xt~ZPZDf[[[.)PE|w;FWg,vP7-JC(+][;wsQCFrXTqf63K5ʕ)H0Fi&M(==|sɒٺݹ5mTxWeomݡ]Ď.T} M/+QmW r uj)]l^v_YQ<:+Žg8/r~ȁN t#he}qy }Ծx!Շ, ]6>dd;w1px 'f+牬^^ etވeM:A< xPw~Bs he]@$:p\5EkһNjʿ y-(59`!_q;F,܉U6z6pO]Р#4>֥ME| [AJ`ƶAnV!N!S$ @Ё'wA>+wڇ׮m[a,][,LN0ݣ蕼v*ϩ*f'Mٜ_D%`tJ͉ޙ,RuՕgoB F(#VMk[ y}M싏:pۮ%kJjVC143ܛV%{+so{"6q_Ĵ@m(*,9\VLю|o mhS紣ן҂3~(طDl1pEI$Fn[qM6s8rw{X$룝⭦nB>5Q D FUnbNOO X/tvr@OIM-XFx6o]%w)EDHcc'9no{s,Ut)"Zojo![[Uq"K;/m'^ |ɾmɝ|61kPS*&jCn&nHPJBĉ@!v6({ oe$Û7ޭHh\V~$MX_K 3!TO"HEUe%ϪT>X/Iz~F R-TN-JHꚩ|m5G'9-oaN֏;Gz ya֨'\⿦YOaN]U=Eݣ>YC@$ke C.UW[`cq o-qrv~lTgf4'VYC@g2lfi?C5ełH_Uo?y(y>!ĖԄx9}xoz8O8~ of%X_O70@offm{ʅWJ1=HϹ!Zh׿vq/#RV: ;ɉ;Νjxn&'߻mY꺥4{ Z$OtUQqVݧGŅ]?6l4 ,^m1b;{ #XT*Hˬ&/i2[\^<3{w_a)0mT(.):qwL! CI= i4@цY 50NB"2VR*>nt@ A /ʽ|LɇkQ~EhH2ˢ55Q̝:GTʖ0=V(ǎBJh&oLĥM ĺϼ/$2sV}/ۚ=Ib+G3b 샚0T-F^+S[X;f` dyF|/f"++Q4,#/,HFn G#eM]A k2 wB^RDC11_昄ܞyBH%Nl<ע-HjS(:la,2R@y \Ҭ]pĮr^SyY_@W.8UEYT"2kQn WQbiQ/BnTE*!ԦY|*3M)YXo|3>S{6vG |\«𝾦%S@jS׎NI*::J_Y"x nιA'06&ϠW%#ܲco";u`5b/ jS꬐e!R"-G  eꈸҮMYšn# ?R2oK+F( 8e v3z:V5xZ ӻ0-ʖSy@ ah"r*1e QXl3B*AT1@ E4}]|8/$R\ѐ>ZOwfހPWrJ҂5pݍzEp>c*V؉]25urECY!P 76%= :"̕oQA0( ^_ wA>î.4ըΙj^EԤE`r O`CtvB#m[h!n_7.["lYsQ\V _>êeUNN{D?^%=O8:_@‡|k 'cC_5cn2n'w]6&U ) /UmY10횐RfOB/bQoY/ T rNm"G7R#mD- j5j 3"r rc@hKЋǓM5WCdPKzb NUEw7:M0[4$,*.(׈)=Ewi)Si3j"/T5*l F4||r&rO.՘=\oJQiG?#aޕhy*⎺O[aY$ԩ!"Pl5i|.ܫ`8hr/N ɝ=rWT!&璯^:b Kҹ}(`XQ%/Ok$VKAw ]1(jh^3W-jϽ>?K``H|>98$TuQ|w,Blh+j9⟫kU?NWhT(%(1K.U\MW,n !Xlio,յƷCҪYu9#Gck0鼭hDA{b@ej|vB8K=O6R%W((Η7~Hr:,ŒJEU>YE.hrt(VϋLWVuA 8( g)dRa^6h XK&'Vt{c>Qys(f_?QMI~ djրkRv#QU0.N8]K!ǪqfqU J$1, WJ>?r,B&u'b>@J._O0&WXW9mRG8xqAn۸=~z`AQJPj3io`A$uyMt|ӛ='¦.ڒmK>Nk.Jp2opmUj#XYdvl=ؚ dKKDE<g7#zV\3~h$26oUKX2}BlKDrb\8ʋvUV=ܼ! )T P/RZ;e;'">VgkY*ڐĀ-՗B' B\H'!.N6J K5/-.QaR_0Dj봆lBtJ.>/C g,DQÄWt\\ɖX1-d&:f;_d%$6bW~C9%S7fMӾ2j?+W-6PUm2 DqM\~|6 mfz,=i$wqX{zID`O+}šlO53g̔@q_K>#W8HJ!=m,h7(>w."JQ_+ɭEEs"EHH*T&0~n)9:d{tfܭJ4Fy Qtdu[-nVVaUPXGuN.GL %CAqpUc K};*9kB4GYwL\(em[|,AY Ū gQ~۱UR=&b{yP2=ۃBBkt{T r؂Nh>;tZTt6]ա[Tظ |^=l~+rޙ4M3u5e}ʉry.zE_` ~PT7Lޭ5[eѲ&c_luckw:UvE  #;stV0gJxeU5JhJ# WWN0W:;m{orrk'TF]:""|X.'[<b` '0ZU3$o(j[g5 pʭUJZ/t' J$a W-noͨ!"Fc,əߣUV35Y$W]WEݶ_BD%6L\ RQkH|&GB10 ,1Я"ya꾘:,CblxOˋ\s+n\9W F5{9WQtڣhKhUX=}u{8F1q'L+㘑> + Z('xyrgV1sZT넀]Gj \i$]^_ʟ/XNF;ZHk]]ZcN1((Nb%6.o*9DBRS |||i;*#aiKlM}‡,He2 3šd`HBaCnrG՚6--@]c+9y H!:R^Ӆt8N>ƭF$wCtA TZ`HV4d.k!3ȷMk HشV/.h*]NEIu1|C=O C L,(ĕiFԠphM|v-'Cq~.&˄Sd.s幻z@L逊]: 1x^Ra3s+( roi)d\xLw';tg& Muʬl̷9 ˶qxo8c1U8~F(pǵ }$ m )Y:V+JbI^km!HVLU RVP8Ĺs1/G(55.*2:;|!BMNeKe8( 3<ԋ O6HZA_-Eu.A\1ۢBA!9SsY|^r@ƱAц/ӿ+"TƼG. 2y)h+yχIq+6,8q{y[. ';`a Řs/ 5ȊAB(9ڝ]5ex*9݃`1HEط-'^33{iZ̖t7rT mż+9Z>MŠ \ 0獵hfG`nQT _<(YNJYþcyE]-f+[NK0 z͘amJoӤpT\iE/!Y$0`FjXH2bymcM0#7 ׁ(Nj6AbegJԳڗ bn(KWP e՝'/la|>*2͢)/_`dkxnܝS-b38e!Mi8C&y舴 7Et4"쓴)#"/Y$+XO3XK? ?jbՏ0X=zn:w?r3/ժ.j P$WI(ǜ$`5_Fby#\hDZP)Q6i/ȱF},^:pӟUg) ~0zv.V '0=u"q೓k}Y"RI"rܩhyHܶl\c (u|deyo6fns"&U6]֡8L=#-uTQ)`Lî30H&ӊ$N6.:ѫj̓dq^ Z`|-Uj٬J1i SٌU"Kj8UKцT2,ʖg.bT7_?$gri-V_=~iUGm\a\)-:ɧK8R˲E!wO0/AVoj;(E]/JQR2J&ܵ|}hzgLc.䣋Ce[ُï_,*0-L`ga}&bQF dj2zlT0"N4N }|]:c.E016?׺#32_;c/k7&*vL3 %B[A(}&dEn)۬Bd!p) t5ΞoIPYCG,e 'd^?C>ƇO[[iZxXZ$U=<!'OwXlBBh7zM{\ؽ+pZSj%u:2b+'v{^?? 0_n|ހjbrr~YTVy9}1ۯpCEk2Chhm =9tp a㜂C?_G?rO&O~'b iHPp1Eս6Áz3:5 |z̲ms̺f%xN"-߿8+,{C#$ d6wykhWݞ=98 i!p=उg!RU>G`,Yb=sQO2`#[=zz" Gh',{h:K-&5I? 46k2ۣI[p;Uz_Pmَ rW-J]- چ3s f3pٌWFǹ`X܌ocB]Px9aU`{d׃@y%!4tk}.zg)G4 q[\8^' |niݏksĄ׃@O Ä|󛝞E({ <2 hӊ9 Kx@&Ta 'u6GGAt4A1Ya}zR`uFtTGRGb\,2ef{&1iNU(84ƛ[wCrV~(`L `Lm54qH o c Wy{ڕ9{#IiNcAec~rƘ_cFN1/X*5FLα8n(fѽ;)A uW̋(9 ՎzԲSq86 3 >mnq{q?[NhCA}gtb*ς&qķ@8lm.a͜F(.`D]Nԃg^-X9YkWm _cA5kt$%n)(7y پi!gl%FxU 9S a-kΗhDnz/>|v;"MW]'F>{56O5:j~q۪,swq1=x'ڏ1cV 9M$_E sRa8<`:k{K6jG+6__lJҩ}LUH@ kfJh*Ƿ}&Cܛb2?~ݿ;z>|Il9dO?3syOyi 0 `]?OLQ尡ҽoE_?t:7 $ŸQtƈ- &Mmd.҂]NM(mL+V𳜢7|AwT$}ȴa%{ӛǃ}_KR#KkOS#]o݉J=( $51&'cP7%R,Bf{sz^y.*] ;=W1@w5yG8##l/É[̜Y@LELkSxSTU28q+S|/]?rbLvvz9B, '$77@K9|hkz' FRE?<¼0g(sn끉N`7nNPA,E@9~JهC)_by'hCe8Η]Nv}By:zç='hZYz^ ( b͆t, mXi!nfx|eL0tQUBe&{3blom}EAm9C诋LfF={õcg,t:#,}P T"9 p|\#&q/z'r:-fd$;+ }*î#Ҁ|]LXfik26Wܴ~2k5}ؔz~?:1úx c+,Zk1s'LBl tڶFt>$*8d9;s z`Հaus=r'_0?)L\~6KȆl;ֳdg-wK86i}1ʁZmmoia Mtf3`F#3q|\4[ۦsY6>~%йO\%Hof#l)*rJ&.1R ՟|`QIGQc^`XƔ,mx)@|罘a"඄Eȭ b\HzlԽymFBg\uY1 e!U.|@i׍Q\ ;=\ O+y}ui~YV>$ QST\ Wtqb6Ft5hMJ(qppCt"c䐑1PϏЋ:#2emZ0("ˠGC*CP)ް(g9NɗJgc,]i;4Mgoͤr ͜l`h(hUi6Fdm sc$q` Fr']<009IF[UkfCZ3ޜH(úe.Z>QjȮ<_ʻ/nX ĴrD;2)'$K.7oEp `Wo=!tiDkGCDJ92u<vdUV4|!o_xUAZw6E^9$O uŁ6#`h{>ϓWŝs3׷: Žsig"t_&)#̭"jK`0Q&oA^Aв[&~%(ڻ@n q3nooޔ*)4 ׋8ؐѻJGc/+AcRSe|WJWbl7G[*,}V9Bߔe 췇דmļ$y`h~[׮Ɯ~&/ $. /)]?7,Mz IDATyD{*hI1IN텞[5^)8UQc;.G!w>>A , 9l0Cɭ{&d?nSBwX&}!quڟ2A"ƋUo9畱_xKd/Ml|6xD5*]c0q6912e~zq/{IG0 a@p E品!yu:icv!bkNx nMB{Nqf Ubэ"NBє_NB*Bv hu3|l@w63$Pctai5`/(9875&gܺ:C54`Z̮8-_=o8Q=Cn, xKv<ƺ5 q4z^LN ؝W.+pbqֽ'E@8jNLyYeShޛmyI!`!1bd7) \PxXcl,qbjL!M[?aLM~c:.x[0h1YFT8vphoS(@c [ĮI2-z5δƩa|0>ITD*>gW\=䡸5h8,kktg+#I)orbDI+٤Hr)*kn*'E](l\'iqy(v L\{5OaQvu0MS+b66*_Bɯ$ | H?c(h@(K.qa.5EtʯgjhlÃz?Kl9t*X:r[- P ~Y)&y.dhf$PoS2o0Ii'p}T^V*@4s e. iQGC\O8#s"g۹7z|S],*Pwa(& G k.)MY"oQ[|2RWy/x UIP`>:hiQdy`򣐻yʜǎgy4 C>q'-QL#E "Iϻf%#P7Z^8Oc\ғ 8eCa_bJlīsbms7Ȥ5 ~;Y&![(]om[Lg"sy/NPDIf9p|}-r>J{[b҉SZ|mЇV l& *WY*f<[N_5Q,% RY< am7B3F^MVҖc}+ QS@2h%$vn ;;C.0y8p~^}c;1\!F/-LmBp@D<a$Ár=r<5vǹ-LcJFT6.΄j]g+:do, δԀ0xu@#9@Wwkڄ.FpJnHX~wa[KXLXZ74E(CieXӀlCөEY$*.vZoiҫ<<~}{ڼ]eA'Jp J9 o,&>~/=3nTkZg0+UnZ}N'ő[:-J>_-ȑڙ?NjMO9Flezx:ڔkcv')|<ܸ1DQo{e?>Gӎ0¡{;e7i5#11mX#.q8tu} b(T5t.BY"tAl7dZ'48ns@?yPk:-*A.i6LΤ&B3܆?@9"3 βH50C9;>)Hw6g}[g9; @~ D=SȞ ԩd\V3cfď,m041ADܘ q1oln7sX=T3} _2)b٣!2<ET4HՈe+0PY{9lݻ`5,lyS4{lJa_{]lu}3qTIDg0Y[#g,AN`[[RAgu:=v(FfT@xRu)<DBeS7P^PLKt2Zm8Zsp ia\Q7$Lj.){DU&wDVYӖt޶s@/2pڅ. ;gs}cod*Mrx/Һg(BϛrCV 2}xp&5ʲ9Wsps@xԶ4[J/z. C O uu;wގIYbk3K"nB:[۞~ j-֦s.fXf:E5T7&h\!hΏ#Bi@7nBP~.w&X`7 [&ٽ S{CǑ&t܌1m9rz`HmB#ݴ#簘f(,&έ啕Ώ'dq[0Ou-[+0b&F4'Bϻ|8jvQnLr8ElvmcV{O)q{s1:YBx%:{L,Idz` 1Y0Wg[k $nҟqlUc`ѽz)^LmPSq#hhǓ$Q ФSܽ4T`*8i"qN0s?2%IkD8 7k cx(Hdž'NtnMۣ=}NH54b~[Qb |$8t̙r~6? #&#j.xu` ?&#T0?-)N Z幀*aEx+WޫH\wex8N(gFpiͫ ]Վ>ެcGP`F(X_sд^Di6/g[|_iNҭjf,|6@|Ucs=6ќ \V7CV&E=!yLAStNAN0%COh9!Wwn<hkyY]NE9gS8{Ձ0>}+MEUuo*;%-~8Ym:,ݢOݥ<3KSE]1'QpQ/;;TjŹ:X SrN9g?(1_SpdINژd;u"h}),H6МG&8qg5*hXQ&?tҼn>ejY GCS.C~UU9[c"xHdh[h]/^ҡc=x)7tnuEm(g 7|RZ2nXD y՘ a, hۼR5gQ+dօ-4 Yyx4zזv2Is?(rŶ=BRj5q1{بKF[ZGSA/H)yjw|D@'@׺SdU,`DNZjߢsWP}蚡pk;W.2T0VriJuJ\lςvQZz$!R[!v\yqk-"|.f>(Pn :1ޯ>w1(2KTd pM.by/^$qy NJ11q@5H3%:GG*[~]sFc2:UnQ: > #\ٓGչcuFH 4L y0_az-vڇrkp\CLsdZTȧ!3e6c~:;7}o9ۛqH޽;nm=8\;w5k%s^Hø[5 6EKX[B{>J#iwH胪:u*"g,H%|WHLYN(uP}Q]l?2SKY>[P9d{=IԄ[crx%*2™0P5Ntr!V6Na"V\a}IHusmgYY2'h(?1\zH7HNNs' D-@Q 3nU j`%0FnԾ%{[A`(LSSP-? u *1e%QVqYFJ-bgOFۻ˖ףT׽$ʄ,r9ED& 9-E~U*S39ü/XW:jP:M4A ܺsΈu";mZwW?} (茻 (Iv0FwKc>>)QmyM =f% l:͝S^^{RDjYNn_a", !`F)Z*B'ZnhZ0BuˀkmA$em}ErvYBCjO7ez] իoϵ ;+߼9,8XҪ./@uVr|^8p)H^hCQZ@@Zɘ~P4hnQՁK!_żnLo >cӖTx7&u0H]Ϲ&[KM)wK/.5PxpI᪟)뻓xWW]wuVh(t"Ǵx [j 78| IDATPY d4y[jPЍ \_a( ~vs:=Hd |ePbKJ. ug4UVE=| ),i頜z|/C{Is 1iֆ9 5+l %mk^VStɶ`7> z5IHHaV~X?ĺ/^F_sUcϞI(ш>oϭ+恧G}AoFx.RY^;I,;+\ U6p6FwPP=jwLvo~>Wb|4 lBk3Acf$O|^yA?-?r. (ho=3@j> RU:K>( v͝-1t]4EOJU<}pwѼg܄ 5h8xbg:"J9VB#x ,$׏LޞoW4x!+2%PQ+ =`ɑw8 SW + 4#/?" ٟqI|.Scv^Oq ģȊXM\aə/N6pzFQإShH0A2u??}sBi=-}OnGny!ny[Jw2i[ ⇿)ȸn&Xh蜡˳;O^raY t VSg43bz !DAuS$%Le*gZ0w<(WZcrZo5U9wK6w6h=?h( 0r\(-⠥+@8G=@eɗjbqYK/k֚xv+ E)!ut`z:Ɋ9ʭ}2#&yv{)y17壘t(- 3wN901|׭1)=;z]ٸ0L~O6W[>$  HlKE{ȋQGI@r;ySXbSi iO_3ՅVÈ@ާ6htEb CG;U; =ֵw'}`:qSY ɨ9,7J?+ z<`Z*\WګZKR4br>Ȳwѽ*2*jދw[x?|RKoG[/a3Vtt\Į-1(ɶƇZu* }gGCu:3*v!R#fmT^++^Y6nh)e1hۣ1w8S, z"{OF1Ӈ&QBܐ+jA D$HDSTDr!bhL#hnsTb tNFoؚL?XnwR+L6TQOfoU#SO ɂ!C:9H-!EJޣUS/Xzitפ; v( b[̦ƬZ2? ֦H H2n(x`/DLh҅ض5Nu+Q<َ#%=8dd/pѾSmNϭv[=Erw$0YPg"Ǐ) !.e$s,BȰCTm1ΝwnwJ->!{v~Ւ.o>Š]|% ]w9:gs$ݰUC%N Xcr{?*쬽hBܜC`\52 N8z6|jGC2Ų+TnȤd RVح.lFD[bJ %Gzx !R$r8{=g9"qi;5҆d ]k'?غbN>w8SݰQ_{}:{]&\$Y0n*RBe0Hp/Β{_/(~E{kys]6c-I,r#2?:beOQƺt8]})I辞UmA\4U.qazT' PK'B}Z|QP(Ew)Hg#%&%̍>Jj^UUqomMՒvb1Oܴ*KjqFcHba9΅xAͪ@[Vޔr߅f.@d'?'jȉ/& 5=R5*Ьz25 \v:TBoZC|f!FTtE2' 0Ƅkfa]u37Azj>gd7"ZB JqvW:2;\XӖ66os՞wCa &1d@aDi`حrh,e~ί\K޻u&\G#ɉ&^ʺbߪ:JpofMDp(u#:(2߽k+Ժ BxFTjgM|M,dOh +Z=uV͑I2.Ә01=&BnT沁{O<'B[=Z!`6vbE[ qAW7M>ECm$3|.pԯ5YLW(0ݸ|t~ pnYp I$Q<1ȳV|\8%j#&??ᜌ+oybTܽЍd6䄏0;n wwMCG'ώ7߰#hHN] ׸!-!4l: rCЏ%N ; p-E٠6f 0wPYB^/$M}-vTŒjH^Q}ѩi-#:aY7x$%[6JvPRy=;[Vя `߆ՇB:q-+%~%mt*+˕Wդ>X&'+mTuS|TG犭|6`n=yOymFnr9?aTHLmԹb(g(~ rPwu,!7 lS).'~o8߈1gbN㟽jp(c@r##҆3ٶ΅CuŸyTdV4չ^+ 'c v2쮳G_r#->ǏVgg7Ϭ ;(F[!R:w[FaT_PT%ު-F*@s҉^JX///}!>yw/z%{zǒloc[ɘȭ$e5%Ğ?~>e)ZRW0YQX-LDsF F`>Y"# ъ B&Lo,JQkA{-qdU ؠi'n1nLeX|Oբ\lf qy|cLbwm1l(aE ظ鄗X[XW]~ ",+ 軯^"zV^vmmm~|LfṂΥ"-Q *nۣ7r/TQpj;LHqJ v-O:HqW"̶7 Aw+I6oQ.r3Y4,޽6MH'2q$=} Њ\$ui]M1*&Ӫ$sulx(@V+!lI$/M`*s5pHѳ`h&wtL ۔a:O^¦:%;ytSրtF+U{d8~eEcL$Ϫ|Ʈ SV]]L`uEv4kMiZ/(< 2J :Lr Bv};2A1P>G3FY>S؝e[w&#_U)>zT`_'2 ex:o SxzOL2׮ǚd7 K_0#A^$NP6(lt W9*FY,;;l AdbV<a,B-tJ|Cܖ)" ;Gֳܨ> 40fsvC$4s-  XHIR5wР ~B'2ϹP(!ZQn IDAT&9EmN4^Aʲ!Jj@,$@Z1RA 52\G/?pqAC"هpxt7vWONvPy+RHa@3pځ $W3]mMcGP37AGctY7 Wc۟/|FBH]o~70"Zl$^N 7l4ˎ X.bí]))ƔqӲ{FV`a,'S-IPAḊZN4|}0 H:T*dJfK "Q;ե.m]0v+iI!r%9z`$Az{v+BPf.AdYjsAN!>K/˥arba3Hoˆj\ZH <]Ff+665qdI=PIFnF'ܜJ|ӧqPpۘlVr hKRҊ:Xz>Ly"q0A ڐa4k,e*0UEj59'#-x* ̲*mڡk-EеF(|߲`XprI[z o)w]QOWr϶4%R-W&8XL~9c![m%;6ɼPHjޟ5H|pњWnj`e:zٮ (w*J^5iѫx) ĩwS~ tP4ZG5:Ci |rdFX sv~n8c }1Q4P[OBxd~΍z .C| 0K9كeh2pH =DŽ]k4Cz-;Oθ]7ֻE-]mWJ铤-,CeKFśw$ T1,+H;/Mwl=IaSF _&Ʋ^y@ /9vAn4WC"X,x\홤va_I7!?RAa:NFWyT'2Wdd/=Wm< n(P<* %pL^Dcz'Mf da^lP&vZV",R!lpuulmv&$H L>q5yi( 7Kviydbpt$(οNݕr$r\$3d5`-Zj8 b9qG2 %OO~"%jH.@J31*- J~ΖDkP%E.٤xL{x2n$D2T |#]vՐa%X{%p/n}_qԄvpW7@o/z{5A'?}yrjeڃ@=(N0e%;e:Zy̱Z%uRXo lpkC'uo SQXǙwݻ*n[&^y*Y*)qRkl.e2L'"OXB䆁+5qDNB׿Gz&ǟ}{_7߷ۋ+$d"WAuP.^3`tIeG栕Cݷ,k9tw䇢ڇx`e\+;$?|_[_Z-k5OAO(mx$H.@:RaL !i]&b֢0p`Q*{{5:t%PIjlY*︲d"3 ѳ0_dhMo59}Qb632$f y[@ⲁbY˃P|͢\H(Bn0^w#cDǿ9_,n|=J4xsu6G* OC[B ֎Ut:4:C\8_d\uYaځ:PvطS+H+ܙl鄜Qbf5zmN p( AaG&:lR ODZU _"fx)$t2qT=Z!YזA9L{ 'EӒ}gn7%)>upxfͦ kOƲݙV1UP( <֑J՟z;I'Y2 upΰ<̯gҖG^|k;ϣgvF˪*b޹:%٨xf.cUYBPmM|;)^<.JAr &\\3>qvn>&](*GlR^a >{.kerD>B=az UZa5юhZ~6. S]cV~dgP2o!PEF= <c"{%=~XrzgѴx((d'oVaARvԅkyJ pQ;1HGo$Z`sPEEQBAD>Vȇ߲\A(vh8P A7v|fu^8TNt-cil,0F8.t/Di>{ zf#[*j2bIPgK7#^O舚S/N.l~nPkH\LyfuLW%ڂ"bY/I޾U)fboD7U(‘&Lyydygbht%:NfKDL:̢qwlzUny1a.9t H튃d;`4ҭQEV7zsVuF%.`hS+YNrȇCZgm껡I:_\2}T>4GE7Xh.c1R`J K{R(%on0Sl햷.;B(Bn[^:y_tr"I/y^{e0WҼ׆TL?khIUiSW0'.VF̄lM|lO~;Xn# >C" v/-̈:y;Z923WBW"0+Idl?6HF/1/ TqWD ƅ5'G4JMVElJ)^Zqr~̧W?o CfYWIVdUR"n`wlZT%#!m&^Ƽ` U1;Xm,uռ2.~"g;ȁ+{#ɛ+4jF㨙d\%7UD۵x#OTF>ܮE]A<4~S"0xOm" 5mbUN\eREaN6a0 r}#~O: ]>!-v\ؑ3j6nuiYxz[$z5Gnd|v(~^TjbRبWP@S:PBq9}sNn cּ (بHt/bdӤy1X* EYGHߡjJuBzw|@Gt7ŒHk/[w Dǰ O"FptmJͺX $l-V|*WTNl J m<-OzgGC0C_oiYLn-2"l'dNp]pwJY%juLW҄mxg#O2uƓy&>Rc n{y Ar|J0$i**^ţ'^ m#L@g8$Y3Ȃ:R$u,!PUN$kaH`Q&+) Oբ՞\]WaG$(zT~D;n6b|ƱN-\n|.) ]NbWB9Ib;IkFd,tR'*uO:~u|3'Z9,njC 9^|Sr+z xWL!tK6 |EQW9VN4vxX*!=W[9d|9OX@jkR[4[>&.l4(Ѧ%r3S 5MNٸ֖NqJU g ׶~gcq38BMIx{$?S\`2%%#Pt%ڕpE_ "Df` Lyl"|gU!`(Z iϼB:D5N 6KE$'k a KP^@qM@˅>jE Fو"֟_5]WJ??s Ō"@*q4==ן6 P\d_@Elɛ-&tF/^O8ᄄ'pI#8;;b^q=+Y+P.tA 6VF#j#Hpݒ@+%į5rKE!{'$|It0 *^~9øc:Lo;#B+vOJx {bJ@pz>y:l`z̑m0B4u+H|4c}_V;ɽ{$+B;>=պ|gLh.c ћ8oq9hH,^bKr;e䲟L%[I.=T9ChYȿIGjpzJhίk C)ӜG _S!خzq3Z7|rrϔë81&ZO rOKͱg4‘Vd`} !'x/M(O9qkV3ڗt;LqRwcܧ'IXq] !Q6@\N%8 Ӈy^x"{wP-pJN<;u衻'Zu _ۃuZrr^EF:w>3|ݕf TOj~1|m;҇m!DK ͛M*/PHBMS=˶ӻ/ gb;JY&c(q_/ D}~\4 kQa.XM(^{EqSRzv4Sދhnx#D=&uU2L(-AWPgAN/lY/d}T`95Yд3$~1? "JMYQ_'l/k|I0c7TN lyW pzq|!HJ{%$Uxjz+ =yL@7E<ĒDX,\)%Tcx2H{<|Wy,Kqu6C5v(.xhe6KR6?K TRjgݻ=\|2^"~0I;':oۡ$岊/n9Vje-;ftdS ,P4`iF O#|,jw9 ϛe6YEqTD+lCN0ߺ,y6_OΊUpV]-<9ٟ>Z5`"M;9Xj (ocƶFkeRW0tk^eV)*8[(6dKB~I\qRMa842o "x"Em7`)֢H~{bAdF{gǩ\-Y-0H\a6/uj>bt(baPOHPɣGftGu=Y4^3AR0HJ@h> ÿ@N*Cl` 39̳N|"Ӄ`t3х|,*Y`jo'GPN]-+@* RW<y1U9" >5ktIT\ v^o沪PpXZ_jbǂ'un==982(dDzK?ҿLn+vqE\S Ze-#AIle z?ɽ x%0lcjyŋݿ>}t1v}ѧ>`Wsc(-kWQlGw`oͣn]/Z\/t2& PōnD6s\0[BIDAT{fB\s*)̼+@<^׋DPj&a/r\:. waXEp[rt.՘*N3ꨬ > PtlHGrvgkk G whihɐkv#"O$K}V.@Uy{u)Gϻt<DŽ( ͹UapGڨjzS+>0&clN cDV3!-)3:Lf8˭OPf9oKa R $U~2ҙ&ٹբdTƌ-x@,M,h/^rɚRF8X[[żsέ[Bš<'yv27biFY/^CrTP!/%Ijk3N8q;gzUqÚ+ᆞnlz{h<@XUe<7N\@d׬m)N SWj'@3g0YmI%jXJ4{;rm柔 ncBD+" nh豃֬/O3îOw>a>]YN72oaϢ|Y)kMHd: &ZLÔB bMŠU|/֜){; E1<{t d0`|ӧ.'uLGЊ!ҸqCjkښr yZ6D1=wUbM2,=X^nK2iLe#%[qgW\DTi87RбT9I`<r'WDuGBVBDYv?;xsqoA݃!nS$9XT: 8-P$Q WqP+ǵ-3|Z*b+ ' ̒^wE_o컲d}U{Wsy{n<3l:r18e7JO- Ym:YE̊~/mjwq; y7eޡ`BFOk?ky)&NPy )Ne* tٽm f+QָQmjc/loc+`gF2tx,J}v;*vD =aJ핡t2%7+&sBHI7[Aux$<*b`)T~FͫF+vJs$K\̥G* ܲD瘡(!5hQv ZM6 Ȉ-^ik60yXB ^ t*l"7ʕNm(S^S~l<PQt\p r 0:,YOxJ+(<(0Cq]tV oY;u ]Ţhi0n=/ソjqq>.h?ݒ&WO @w%tznjJ3q;aLli8\ }9w zAnZ<#np=}@J:+z k VD6p^y;/ltJ+^{̿$M9:ay -,n*ԩ$]sKu'} .Ǻh{gǟiI <_{UEhWl;Dء'T1i z2nCG|{^mu'P_B4n`i(nKI+o~ }[6mE8_iyQtD^bRٜDcp/ z0ual-woO.}+6'xVRG n}[>9=^[#̟iG08QJZ= ÖYDT]>EM& )cZA ]197MuZV0l!{1'c;b1np+:$n+ogj%@Y]2$/,U۾履\}v<gܬЍ[Q Xm$s7$oPM'.=!j.qѮ] 2/M]vVN+B1'e"i {1SBY*>hYBHe8PZo^: ^M^v{H~MݒZV[-`bâMH+$7@GAQ;{)muӺ'،ѣ<ڞNêh"-E1=zȀh+7;ơXxlKβ\aUS{rL!2ѹJ(_۲Δut426r ҏl)BxPt_ j8n|Ti@|qwihJÓVe{QsP.Cb^[V%d+ioMc(LRp$s&ֶ8.6Ģ5S~%VA 1t 5X\Xmk&!iX z\Q&yDPE&)Y-R@'r%aDwe\YBKòыKJ~b%%[DrlT Lo4*!AZ߁:/PbdEFeV h2)u}aεnΕuo~A,h_TQID wA/%sDEf Z7 ̒.Zr%Gv۫Vao eзq:DGZe}غbçkd@ yiz(4r =wH$§Bh筢ЃWkΏ{Ym]}L>o|ވ*:)*LXv!5΢lgJM R ?. =2L"Ƴ*viq̆ɟo , h8nRYҒs]v1g2;;;v>@R'c0:W\?Jz\Ķjӛog[JX ;!>f}5Zju$ܿ[sx斚g=~e4KK8KH.r28VhvquE? Mn(?FP?߿O9YĠ۬8_N|t )ltNr02S:Vo:0Vg8иa-DxeӚ)ڇ&l {Tt}h$]5;)zc L 9GjţvLڪ}`0}M]Ə>}_& a;tgz!tmڽIPxE4 Sy_s߮n+New^Cv<p.BGS̮ϑd:b_v(6,g>tOJYJD?|'_75&;~P #@9̻/y0y{H p#J\-$'Ŀ|9Kybܔ^50ԃNRP@ G>%lAˈ\[֐5v#@;`q]@hժ! ~ȐQ^һݦz#`(6(ׅF UyC/DYQ y&D,*XYlxr40);GN]Π$N JW;N ?'WEbv03 fcPL5>?Oį|>yV Q>opyw:o ~A\\ľ]~}N7P05 x5$s/m;E/{Nq-yʽS)Q) -@aNeڀYB=˿]Ex-߷A ¹EzގuWvDek̕Q]wrSsDpѣ]B(e_ 8Q{%QǟˁOC%_nIrˋdcva> Ñ:p- Q؞NW|tx$!T v_j!ƩjÕ+h?_=x C__"LIDUE]&딴 xel^aʞ9_!3hZBB3 Oٮ sj"agX,9W/ 8Y-Bnay69.ޞum1ZtO1uܹp=AAQq(jc4l벓/pJ)yB=~п2ګ4K.R6n>.:Yܨ^Wexf(e;j c4*],ރ!BFmI)ʼ 4Yŀ+$||.f AߏgjM r vM8{-t 򼟰uy[2s ,R{ %z ^ދ,qN?Xy[cE%W [tc A=ڲ̷gbIeǩl٢ 䛀U-ƍ 鼳go:M'*4% ٳϥVO@,a2WFoϭJ0>KYPUD5e6ێ''ĕ\lZ+ETd Mx3z{~z 1WPoo] D PSs[`5:ŬRbyے"16o"v3T e7,kׅ̖5c#oGb,P$3zrb7n^l"uTN eڥc |誖wQm#4j27pQD(xSCkmhr#벘ыh%jٟn^~dO*3Y%K+`@wN&si5({ѹe ə&.)VQߦ##yrlx>ʢ,?;z2b]/5q%R$ey@ˀfMiBzRfLgDDtt굮bqLob: !r^EDFgW DU4=cAڦת&#*,sV"B ɤ6yo{d ?$!9o dﻦ2֐ll}"?bdشXKLʉ4p5e7z[G4e0:.F5~"P4f}x_!PV\\3bV){-tM ģuiA\zēN),kȐ"*M~kI⏔~ \da䌓Efdž0<{^"I؈XO AkU@q?PR !PDXS[?_ofaޱ9̱8囁T|h'IENDB``!?k~jf>,o :xڭ ԏP"CƐ'c8f!dL!ǘL!\D$!BDBƽ}׻˺|WIbNrHE(Xx?|&$ۙQ~/9GN_gF/EW1bby)Y,Cd}5VгٻxqU ojzgk}rhv,KWm!gs\Y>ok ښ{Km7evy}by( / 0DArialgskH,\|d0|Wo 0h"De0}fԚgskH,\|d0|Wo 0h DTimes New Roman\|d0|Wo 0h0DArial Blackman\|d0|Wo 0h"@DWingdingskman\|d0|Wo 0hPDSymbolgskman\|d0|Wo 0h a.  @n?" dd@  @@`` x*4N+'e@&$# "! ?   6  %!g'*O$2$m:l8MT>?$b$8$ 'XwC( 0p< cw;(@8  uʚ;hށ5ʚ;g42d2d0pppp@ <4!d!d 0,H<4dddd 0,Hx___PPT9ZR ? %O =p&Recent Progress of Grid-Block Designs ''6( '  Hung-Lin Fu (P F` ) Department of Applied Mathematics National Chiao Tung University Hsin-Chu, Taiwan (e z N  'Y x[)fzZ(U (v   +           H-Packing" 66  :An H-packing of a graph G is a collection of edge-disjoint subgraphs of G such that each of them is isomorphic to H. If G is exactly the union of subgraphs in an H-packing of G, then we call the H-packing an H-design of G. If G is the complete graph of order n, then we have an H-packing or an H-design of order n.;< < f/ < < >< < < < @;   M    +Graph Decomposition  In term of graph decomposition, an H-design of G is equivalent to a decomposition of the graph G into isomorphic copies of H. We refer to the subgraphs isomorphic to H as the members of the decomposition. Moreover, if the members are complete graphs of order k, then an Kk-design of order n is a balanced incomplete block design with block size k and l = 1.fZ W*(M  ((@   w  V Well-Known H-Designs  <A K3 -design of order n exists if and only if n 1 or 3(mod 6). (Steiner triple system of order n, STS(n)) n = 9 (Affine plane of order 3) 1 2 3 1 4 7 1 5 9 1 6 8 4 5 6 2 5 8 2 6 7 2 4 9 7 8 9 3 6 9 3 4 8 3 5 7P+< < 5< cw< cw< cwcw&r    K4-Designs0 6 6 6  A K4 -design of order n exists if and only if n 1 or 4(mod 12). n = 16 (Affine plane of order 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (*) Using 3 mutually orthogonal latin squares of order 4 to construct the Affine plane.cZZ< < < "!cw+ZI    $    Grid-Block 6  hDefine G(r,c) as the grid-block with r rows and c columns where each grid point is a (distinct) vertex and two vertices are collinear if they are on the same row or column. If we define a graph from G(r,c) by letting two vertices be adjacent if and only if they are collinear, then G(r,c) is isomorphic to the Cartesian product of Kr and Kc denoted by Kr x Kc.iZ < ] cw<      @R      An Example   sThe green and pink grid-blocks pack K9. Therefore, a G(3,3)-design or a 3x3 grid-block design of order 9 exists! r%;; ;;cws  The Existence of G(r,c)-Designs 6  ,If a G(r,c)-design of order n exists then the following conditions hold: (a) rc n, (b) r+c-2 divides n 1, and (c) rc(r+c-2) divides n(n-1).PINI(C((@P  *   Lattice Rectangles6  4A G(r,c)-design is called a lattice square provided that r = c = n1/2 named by Yates, 1940. Construction of lattice squares for n1/2 an odd prime power was given by Raghavarao in 1971. Lattice squares were extended to lattice rectangles ( r c and rc = n) by Harshbarger in 1947.@  : ( (+( (  Z   I         Real World 6  In most practical uses, the grid-block has size limitation and n is large. Thus, we have to consider the G(r,c) s with r < n1/2 and c < n1/2 , while preserving the unique collinearity condition, i.e. every pair of vertices occur at most once in the same row or column. This is one of the reasons we study G(r,c)-design or G(r,c)-packing.VK0  (r( (  &     Resolvable Packing6  lA G(r,c)-packing of order n is said to resolvable if the collection of grid-blocks can be partitioned into subclasses R1, R2, & , Rt such that every vertex of Kn is contained in precisely one grid-block of each class. Each Ri is called a resolution class. Clearly, such a packing exists only when rc divides n.*7 E    ?  (+ t    >  G     A G(4,4)-Packing of order 16   Resolvable( " d    'A Resolvable G(3,3)-Packing of order 18(( (  1 A Cyclic G(2,4)-Design  n = 33   Known Grid-Block Designs  jA G(2,2)-design of order n exists if and only if n 1(mod 8). This is also known as the 4-cycle system of order n. A G(2,3)-design of order n exists if and only if n 1(mod 9). (J. E. Carter, 1989) A G(3,3)-design of order n exists if and only if n 1 or 9(mod 36). (Fu-Hwang-Jimbo-Mutoh-Shiue, JSPI 2004)6((+D(7(=!@      - G(3,3)-Design.666  2Outline of proof. 1. A G(3,3) design of order 9 exists. 2. Let p be an odd prime and v p(mod 2p(p-1)). If there exists a cyclic (v,p,1)-BIBD, then there exists a G(p,p)-design of order pv. (F-H-J-M-S) 3. A cyclic (12k+3,3,1)-BIBD exists. A G(3,3)-design of order 36k+9 exists.(:N )< &  \ 2!n 1(mod 36) ,6 6  The proof can be obtained right away if there exists an (n,9,1)-BIBD of order n = 36k+1. (See it?) The proof can also be obtained by using the existence of a (k,s,1)-BIBD, a G(3,3)-design of order 37 and a G(3,3)-design of Ks(36). (One vertex in common)|Y L   /Cyclic Constructions  A cyclic (72t+1,3,1)-BIBD and a cyclic (72t+37,3,1)-BIBD exist. Use Peltesohn s result (1938), we have five classes of base blocks for 72t+1 case: (a) for x = 0, 1, & , 3t-1, we have (0,1+2x,33t+1+x), (0,9t+1+2x,27t+1+x) and 0,9t+2+2x,18t+2+x), (b) for x = 0, 1, & , 3t-2, we have (0,2+2x,24t+2+x) and (c) (0,6t,24t+1). Use an imagination to put them together as grid-blocks (mainly by Mutoh).Z(((%(  (8&D   ; 03#4x4 Grid-Blocks0  UBy using the following grid-block we obtain a 4x4 grid-block design of order 97. (?)  VQ0 V 4$A G(4,4)-Design of K4(4)$  Let the 4 partite sets of K4(4) be {0,1,2,3}. {4,5,6,7}, {8,9,10,11} and {12,13,14,15}. The following two grid-blocks form the design.$i  5% n+1 mn+1 Construction!!&   Theorem If a G(r,c)-design of Kn+1 and Km(n) exists respectively, then a G(r,c)-design of Kmn+1 exists. So, for G(4,4)-designs, we need a design of K97 to start with and we have constructed earlier. It s left to find a G(4,4)-design of Km(96) for proper m.ZgZZ.6W@%  :   6&Continued &    Proposition For m 4, a G(4,4)-design of Km(96) exists. Note A 4-GDD of type 24m exists for each m 4. Using this fact and a G(4,4)-design of K4(4) we can prove the proposition. (?) Z2ZZZ  ((((  7'The Missing Cases  rTheorem A G(4,4)-design of Kv exists if and only if v 1 (mod 96) except possibly v = 193 and v = 289. This is by the reason that the proposition works only for m 4. (Too bad!)( ((2(:( &    8(Joint Effort works!0  With the help from Zhang and Ge from Zhejiang Univ. the missing orders are settled now. Since it is quite complicate to put them up here, I only show you the key array we apply.(@      Results on Packings6&    RFor practial use, we focus on resolvable G(r,c)-packings. Therefore, we consider only the cases rc divides n. In a resolvable G(r,c)-packing the number of resolution classes t is at most (v-1)/(r+c-2). If a resolvable G(r,c)-packing has this number of resolution classes, then it is optimal. ()P)(   ;Z   "   )   Optimal Resolvable Packings6&   There exists an optimal resolvable G(2,2)-packing of order n for each n 0(mod 4). This is also a resolvable maximum 4-cycle packing of order n. An optimal resolvable G(q,q)-packing of order qm exists for a prime power q and an integer m. Moreover, when m is even and q is odd, we have a resolvable G(q,q)-design of order qm. (M-J-F, 2004)W# Wk@     !Ready for Tests?6  yIn DNA library screening, we have a set of oligonucleotides (clones) and a probe X which is a short DNA sequence. Let X denote the dual sequence of X obtained by first reversing the order of letters and then interchanging A with T and C with G. A clone is called positive if it contains X as a subsequence and negative if not. The goal is to identify all the positive clones.z%('(2&+  ? " Group Testing6  -Economy of time and costs requires that the clones be assayed in groups. Each group is called a pool. A pool gives a negative outcome, all clones contained in it are found to be negative. On the other hand, if a pool is positive, at the second stage we test each clone individually. Two-stage Test! V.`(,  . #Library Screening6  4In such screening, a microtiter plate, which is an array with size 8 x 12 or 16 x 24, etc. is utilized and different clones are settled in each spot, called well, of the plate. Every row and every column in a microtiter plate is tested at the same time as a pool in the first stage. (r + c tests for a plate)T5 ~ (@      Y $Basic Matrix Method0  yIf there is only one row (or column) of positive then we can determine the positive clones without the second stage test.>z(W z %More Positive Clones0  For example if two rows and two columns are positive as follows, then we can not determine whether the four clones settled at the crossing wells of positives are really positive or not.2I`  &Unique Collinearity Condition&     Thus, if it is allowed to test more than twice for each clone, then it is desired that every two clones occur at most once in the same row or the same column, which is called the unique collinearity condition (UCC). The efficiency of UCC was shown by Barillot et al (1991,simulation) and proved theoretically by Berger et al in 2000 at Biometrics. So, corresponds to grid-block packing.Z((#    ( @   4    'Why Resolvable Packings?&   jThe replication number of a vertex v in a grid-block packing is the number of grid-blocks in which v is in there. It is a favorite property that the number of replications of each clone should be almost the same in the first stage. So, take a resolution class and test (group) each grid-block at the same time guarantees the above equal replication property. `kU(c  k ,Analysis of Replications  A simulation result of a comparison between constant replications and random replications shows that we need less tests to find all the positives by using grid-block packings with constant replications. As an example, if we have 1,000 clones and 0.1 is the probability of positives, then it takes around 600 tests (Constant R.) and 750 tests (Random R.) to find all the positives respectively. (M-J-F, 2004)Z,( ( ((C&    * References   E. Barillot, B. Lacroix and D. Cohen, Theoretical analysis of libraray screening using an N-dimensional pooling strategy, Nucleic Acids Research, 19 (1991), 6241-6247. T. Berger, J. W. Mandell and P. Subrahmanya, Maximally efficient two-stage screening, Biometrics, 56 (2000), 833-840. J. E. Carter, Designs on cubic multigraphs, Ph.D. thesis in McMaster University, 1989. H. L. Fu, F. K. Hwang, M. Jimbo, Y. Mutoh and C. L. Shiue, Decomposing complete graphs into Kr x Kc s, J. Statistical Planning and Inference, 119(2) (2004), 225-236. B. Harshbarger, Rectangular lattices, Va Agri. Exp. Stn. Memoir 1, 1947. Y. Mutoh, T. Morihara, M. Jimbo and H. L. Fu, The existence of 2x4 grid-block designs and their applications, SIAM. J. Discrete Math.,16 (2003), 173-178. Y. Mutoh, M. Jimbo and H. L. Fu, A resolvable r x c grid-block packing and its application to DNA library screening, Taiwanese J. Math., Vol. 8, No. 4, Dec. 2004, 713-737. D. Raghavarao, Constructions and combinatorial problems in design of experiments, Wiley, New York, (1971). F. Yates, Lattice squares, J. Agri. Sci., 30 (1940), 672-687.SZ&(('(? (( ((  (h"((((()"(6(-(3(4( %+((%(    &   r     j      ,    (  F                |     (  b Thank you for your attention. !t ZZZ,66 <P(&!    8  ` 9o9̙3f3` ___3̙3f3` 333MMM` 3f3>?" dd@,?Ad@  d A@ d`"  n?" dd@   @@``PR    @ ` ` p>> x(    c VuA2C:\abitbetter\bamboo.gif"  <8 "P  P cN NN}/kGrjL#j_     0 "   0 cN NN}/kGr ,{Nd\ ,{ Nd\ ,{Vd\ ,{Nd\    0d "`  Z*   0 "`p   \*   0t "``   \* H  0޽h ? ___3̙3f3  Bamboo   PJ(    c VO#A2C:\abitbetter\bamboo.gif"|  <, " `  P cN NN}/kGrjL#j_     0P "p   R cN NN}/kGroRjL#j_   0 "`  Z*   0 "`0    \*   00 "`   \* H  0޽h ? ___3̙3f3  0*(  r  S    x  c $? P p  c3cw  @` 6 <F? p  c7cw  @` 7 <N? p  c5cw  @` 8 <V? P  c8cw  @` 9 <]?   c6cw  @` : <e?   c1cw  @``B ; 01 ? P `B < 01 ? p P p fB = 61 ? P fB > 61 ?  `B ? 01 ?  `B @ 01 ?  fB A 61 ?P P fB C 61 ? P H  0޽h ? @AvffJff  $(  r  S ز@   r  S ٲP  H  0޽h ? @AvffJffH  (    c $TȲP<$D 0     c $4ɲ <$ 0  H  0޽h ? @AvffJffH  (    c $P<$D 0     c $ <$ 0  H  0޽h ? @AvffJffH  (    c $H P<$D 0     c $ <$ 0  H  0޽h ? @AvffJff3'  &&:>s&(  x  c $_P   Qj pp   #""`   <p+? p  `14  @`  <t!?@ p  `16  @`  <Lȱ? @ p  `15  @`  <ϱ? p  `13  @`  <pױ?p  `12  @`  <ޱ?@ p  `11  @`  <?p@  `10  @`   <?p  _9  @`   <D?p _7  @`   <?@ p _6  @`   <p?@ p _8  @`   <p ?p _5  @`  <?p _4  @`  <?@ p _3  @`  <"?p@  _2  @`  <*?p _1  @`fB  6o ?pp`B  01 ?`B  01 ?pp`B  01 ?  fB  6o ?p p fB  6o ?pp `B  01 ?pp `B  01 ?@ p@ p `B  01 ?pp fB  6o ?pp j pp  ; #""`p p  0 <x4? p  T   @` / <@<?@ p  T   @` . <XC? @ p  T   @` - <J? p  T   @` , <pR?p  T   @` + <Y?@ p  T   @` * <a?p@  T   @` ) <hh?p  T   @` ( <o?p T   @` ' <,w?@ p T   @` & <l~?@ p T   @` % <?p T   @` $ <?p T   @` # <4?@ p T   @` " <ԛ?p@  T   @` ! <L?p T   @`fB 1 6o ?pp`B 2 01 ?`B 3 01 ?pp`B 4 01 ?  fB 5 6o ?p p fB 6 6o ?pp `B 7 01 ?pp `B 8 01 ?@ p@ p `B 9 01 ?pp fB : 6o ?pp  < C AC:\Program Files\Common Files\Microsoft Shared\Clipart\cagcat50\BD00028_.WMF*p T  > s 0e0e    H  0޽h ? @AvffJffF  FFp~0F(  x  c $P   i f   , #"@)    <H?\  ]8  @`   <?0\  ]7  @`   < ?\0  ]6  @`   <x(?\ ]5  @`   </?0\ ]4  @`  <d7?0\ ]3  @`  <>? ]2  @`  <??0 ]1  @`  <M?0 _0  @`fB  6o ?`B  01 ?`B  01 ?\\fB  6o ?  fB  6o ? `B  01 ?00 `B  01 ? fB  6o ? i f   z #"@  ! <W?   ^14  @`   <_?`   ^10  @`  < g?`  ]7  @`  <ln? `  ]9  @`  <u?` `  ]6  @`  <D}?``  ]5  @`  <H~?  ` ]8  @`  <?`  ` ]4  @`  <ؓ?` ` ]0  @`fB " 6o ? `B # 01 ?` ``B $ 01 ? fB % 6o ? fB & 6o ? `B ' 01 ?` ` `B ( 01 ?  fB ) 6o ?  q l   - #"rr @i . <Н?\  ]4  @` / <~?0\  ^14  @` 0 <?\0  ^16  @` 1 <쳰?\ ]2  @` 2 <?0\ ^15  @` 3 <°?0\ ]6  @` 4 <8ʰ? ^11  @` 5 <8Ұ?0 ]5  @` 6 <xٰ?0 ]1  @`fB 7 6o ?`B 8 01 ?`B 9 01 ?\\fB : 6o ?  fB ; 6o ? `B < 01 ?00 `B = 01 ? fB > 6o ? u l   ? #"cd 9 @ <p?\  ^17  @` A <@?0\  ^16  @` B <?\0  ^15  @` C <,?\ ^14  @` D <8?0\ ^13  @` E <8 ?0\ ^12  @` F <? ^11  @` G <`?0 ^10  @` H < ?0 ]9  @`fB I 6o ?`B J 01 ?`B K 01 ?\\fB L 6o ?  fB M 6o ? `B N 01 ?00 `B O 01 ? fB P 6o ? s l   Q #"cd  9 R <($?\  ^13  @` S <l2?0\  ]2  @` T <9?\0  ^17  @` U <XA?\ ^11  @` V <H?0\ ^16  @` W <I?0\ ^12  @` X <W? ^15  @` Y <d_?0 ]3  @` Z <f?0 ]1  @`fB [ 6o ?`B \ 01 ?`B ] 01 ?\\fB ^ 6o ?  fB _ 6o ? `B ` 01 ?00 `B a 01 ? fB b 6o ? q l   c #"op@@  d <p?\  ]3  @` e <,x?0\  ]7  @` f <?\0  ^12  @` g <?\ ]8  @` h <d?0\ ^17  @` i <xJ?0\ ^10  @` j <Ԝ? ^13  @` k <?0 ]9  @` l <ȫ?0 ]0  @`fB m 6o ?`B n 01 ?`B o 01 ?\\fB p 6o ?  fB q 6o ? `B r 01 ?00 `B s 01 ? fB t 6o ? RB } s *DPP RB ~ s *DP P H  0޽h ? @AvffJff   O G  (  r  S ̯pP   r  S ͯ    b  p   #"(( p    Bɯ? H p  b28,  @`   B0ׯ?h H p  b23,  @`   B?H h p  a5,  @`   Bگ?H p  b12,  @`  B? H  a9,  @`  B?h  H  a3,  @`  Bh? h H  a1,  @`  Bx? H  a0,  @``B  01 ?H H fB  6o ?p p fB  6o ? p `B  01 ? p `B  01 ?h h p `B  01 ?  p fB  6o ? p `B  01 ?h  fB   6o ? h fB  6o ?  H  0޽h ? ___3̙3f3H  (    c $4P<$D 0     c $ܨ <$ 0  H  0޽h ? @AvffJff<  |(    S 0P<$D 0     S @<$ 0  H  0޽h ? ___3̙3f3H  p(    c $P<$D 0     c $<$  0  H  0޽h ? ___3̙3f3<  ` |(      S xP0<$D 0      S X<$  0  H   0޽h ? ___3̙3f3 yq@ (   f pp   #"P    <?  p  p51t+4+2x     @`   <ĥ? p  p27t+4+3x     @`   <4? p  o27t+2+x   @`  <L?   p42t+4+3x     @`  <Hª?   m9t+4+4x   @`  <ɪ?  m9t+3+2x   @`  <l̪? p o33t+2+x   @`  <ت?p  l3+2x   @`  <٪?p _0  @`fB   6o ?pp`B   01 ?`B  01 ?  fB  6o ?p p fB  6o ?pp `B  01 ?pp `B  01 ? p p fB  6o ?pp   <$@K ` z2For x = 0, 3, 6, & , 3t-6.    <g- z,One of the base grid-blocks looks like this.--  - H  0޽h ? ___3̙3f3"  P b(   r   S IIP   r   S D  6j 0 H   #""0  0   <#? H ^17  @`   <,?@  H ^45  @`   <t3? @ H ^58  @`   <;? H ^76  @`   <`B?   ^40  @`   <J?@   ^67  @`   <xQ? @   ^74  @`   <|R?   ^14  @`   <,`?v   ^60  @`   < h?@ v   ^28  @`   <to?v @  ^13  @`   <v?v   ]9  @`   <D~?0 v  ^11  @`   < S?@ 0 v  ]3  @`   <Ԍ?0 @ v  ]1  @`   <t?0 v  ]0  @`fB   6o ?0 0 `B   01 ?v v `B   01 ?  `B   01 ?  fB   6o ?HHfB   6o ?0 H`B   01 ?0 H`B   01 ?@ 0 @ H`B   01 ?0 HfB   6o ?0 HH   0޽h ? ___3̙3f3&'  &&@;f$f&(  $r $ S 9   r $ S 9P P  2j P ` C f$ #"" 0` C $ <P?` C ]1  @` $ <o?C ]7  @` $ <쇩?C ^10  @` $ <@?PC ^13  @` $ <H? `  ]6  @` $ <I?  ]3  @` $ < W?  ^15  @`  $ <^?P  ]9  @`  $ <e?q `  ^11  @`  $ <lm?q   ^14  @`  $ <u?q   ]2  @`  $ <p|?Pq   ]5  @` $ <v? ` q  ^12  @` $ <H~? q  ]8  @` $ <? q  _4  @` $ <?P q  ]0  @`fB $ 6o ?P `  `B $ 01 ?Pq ` q `B $ 01 ?P ` `B $ 01 ?P` fB $ 6o ?PC` CfB $ 6o ?P PC`B $ 01 ? C`B $ 01 ? C`B $ 01 ? CfB $ 6o ?`  ` Cj   ( N$ #"" ( ;$ <?p( ]1  @` :$ <H? p( ]5  @` 9$ <?  ( ]8  @` 8$ <?  ( ^15  @` 7$ <?p  ]4  @` 6$ <$ɭ? p ]3  @` 5$ <Э?  ^13  @` 4$ <׭?  ^11  @` 3$ <\߭?pV   ]9  @` 2$ <? V p  ^12  @` 1$ <,? V  ]2  @` 0$ <l? V  ]7  @` /$ <?p V  ^14  @` .$ <P?  pV  ^10  @` -$ <?  V  ]6  @` ,$ <?  V  ]0  @``B <$ 01 ?   `B =$ 01 ? V V `B >$ 01 ?  `B ?$ 01 ? fB @$ 6o ? ((`B A$ 01 ?  V `B B$ 01 ?  (`B C$ 01 ?  (`B D$ 01 ?p p(fB E$ 6o ? (fB G$ 6o ? V (fB I$ 6o ?   H $ 0޽h ? ___3̙3f3D  0((  (r ( S %P   r ( S %@  X ( 0PG H ( 0޽h ? ___3̙3f3   ,$(  ,r , S dpP   r , S |  H , 0޽h ? ___3̙3f3  0$(  0r 0 S pP   r 0 S 4   H 0 0޽h ? ___3̙3f3  OGp)4(  4r 4 S 4IP   r 4 S P  j P` ` )4 #""^` P` 4 <޼?\ h` k183   @` 4 <Ҽ?@ h\  k110   @` 4 <xż?0 h@  k150   @` 4 <츼?Ph0  j82   @` 4 <`?\ `h j62   @` 4 <ԟ?@ \ h k131   @` 4 <H?0 @ h j72   @`  4 <?P 0 h j35   @`  4 <0z?\ `  j39   @`  4 <n?@ \  j25   @`  4 < b?0 @  j14   @`  4 <U?P 0  [5   @` 4 <H?\ ` `  [7   @` 4 < .?@ ` \  [3   @` 4 <`??0 ` @  [1   @` 4 <8?P` 0  [0   @`fB 4 6o ?P` `` `B 4 01 ?P ` `B 4 01 ?P ` `B 4 01 ?Ph`hfB 4 6o ?P`fB 4 6o ?P` P`B 4 01 ?0 ` 0 `B 4 01 ?@ ` @ `B 4 01 ?\ ` \ fB 4 6o ?`` `H 4 0޽h ? ___3̙3f3H  (    c $ P<$D 0     c $  <$ 0  H  0޽h ? @AvffJffB  (    c $H P<$D 0     S (P0<$ 0  H  0޽h ? @AvffJffX  (    S DP<$D 0     S $<$D 0  B  s *D  ,$D 0B  s *D@ @ ,$D 0H  0޽h ? ___3̙3f3<  |(    S 0P<$D 0     S P<$ 0  H  0޽h ? ___3̙3f3<  |(    S P<$D 0     S <<$  0  H  0޽h ? ___3̙3f3  .5\(  r  S 3IP   r  S 3   j pp  - #""LLLLP `p   <;?@ p  R   @`  <8? @p  R   @`  <ͩ?@ p  R   @`  <@? @ p  R   @`  <H?@ p  R   @`  <lK? @p  R   @`  <pW?@p  R   @`  <^? p@  R   @`  <_?@ p  R   @`  <(m?p@  R   @`  <u?@p  R   @`  <P|?p@  R   @`  <?@p R   @`  <Њ? @p R   @`  <8?@  p R   @`  <?@ p R   @`  <?@p R   @`  <0?@p R   @`  <?@p R   @`   <? p@ R   @`   <|?@ p  R   @`   <?p@  R   @`   <0ͬ?@p R   @`   <HԬ?p@ R   @`fB ! 6o ?pp`B " 01 ?`B # 01 ?pp`B $ 01 ?  fB % 6o ?p p fB & 6o ?pp `B ' 01 ?@p@p `B ( 01 ?pp `B ) 01 ?@ p@ p `B * 01 ? p p `B + 01 ?@p@p fB , 6o ?pp RB / s *D` RB 0@ s *D` P`` RB 2 s *DP` 3 <٬ x  T"   4 <hެ&F b "   5 <0&6  F  V  H  0޽h ? ___3̙3f3   H(  r  S $IP   r  S %   ^ pp    #"    < J?pp  R   @`fB  6o ?ppfB  6o ?p p fB  6o ?pp fB   6o ?pp RB  s *D  RB  s *D RB  s *D@ 0RB  s *D@ @ @ 0  0$Q Gp    0pS  Gp    <x": ZZ Gp    03@ `  Gp  H  0޽h ? ___3̙3f3<  |(    S tͮP<$D 0     S ٮ <$D 0  H  0޽h ? ___3̙3f3<  |(    S P<$D 0     S @`<$  0  H  0޽h ? ___3̙3f3<  p|(    S P<$D 0     S  <$ 0  H  0޽h ? ___3̙3f3X  `(    c $ԫP <$D 0     S @ <$ 0  "p`PpH  0޽h ? ___3̙3f3   $(  r  S $P   r  S    H  0޽h ? ___3̙3f3rBrҘ"^J:u90jyʫ*n**@nd;/??@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`acdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root EntrydO)J %@PicturesCurrent User,SummaryInformation(VxRPowerPoint Document(bMDocumentSummaryInformation8;u״oVX*YiU H[)gor IRH[)m2׾ r_<>N^PGyI]tSNޚQiA 2EL}CXYenJ;G\wu>i0NKAZ#-B{}-3CE쐚 8s1G-ɬYf{>=|n7,aO }||hcC |hHUau }m-CWk^ڡU ٬\{1Zr++}hlʹp\ӓOudITXm7+봏>![Z ϪIGokC[2e͐ٶDZ9`}!nI?+/ORN~_:u/̷>-6n:Zle!Fi~=GiC=hPVCIJȮBrm~t9r dz.WŸ&VaYMPo:zPk^=*~a KPdyC?o6ķ#ǒn2z_>iSN};a>o?6kԽR[w˺YiXӟH]˚5N&?h1y[Oρ/B*wԹNs~5ᦗ W\Eyp{7ys+ND}|}A??.=yvOI,?4׆F Q}O\/HRJ2X~*U 9a}ȳ8ɗC+P'z[/'~7 ԙKgk:G:{Qؼ㟖7,ғ]qo{Dsa=`m/ r+𭴧e!Hx^$G}O|=,tΗXK_jMC﫬j8C4s/%A ?(tc'?:c7è?>}׃Qج>ҞQ8_+i)}%kF`slq9߈n vX[Qˠ+

FcsMx#7__6~;Yg ?}oG'n2wMdw=L2HgM/ p۠k)5I;?s59"?_''{ {Z`Y9?Y/?z#~ >Lq'伟o??!E|NXR7>/&Kv/)k!oLԫGԯNJ{Qdwݯ{W~ƽrA҇ H$NOE~E[j)ς%;S'~dfQg&$N;I*Ec3\џL-gۃp".^_| tuC݀keRˢ+>_ dˣ*KRgo?63ifK-Zf+u^6ym2x| [gНGߏ.{[bGp7{뇾?SzSѧ#7찍6.wV޾;y+.Q-s%;o;.;~| $Gy=NS$07dwIj#)|?rߎ;!ie?_I.:C'sO9yȿ7OՁA_g]mv>Wq[;A<]G-fX;)F7|| ϧ\ͦtO;KߨlIq;q>KvNsEj?kO0LvBKZ-sx֞ q-CYbEpU뢫!FR>R&ҧ"7,8gEt4+Nxg hU8o [o+kැ߁n7=CA]`CFc3Wx?M: >L}:'H~)>F:]2*Z 7ۆ~wPg6Swg7e>@{_=vaޙ{'A ._|qtua:8<~.>@Rw.gg*&7kz׽~swvfΓOkmّ/o(!LKNaTt$+:^[DmSbK+W&[mnȿ. t|3ONޥ$T3~C$ÙdZzwOZFo >Z<4$6oC5I62i͐N(Ԗl#!|tc3dޓzSV^6^A#Ljj=fҽ+I׃Wï-lySg~Ir|]!t-q#x 6[mD_H}C(}S ~2OGǓOD7 |?6#$d\ܒer_rc5'tdѝ*oϳ?RB~rITsR21|s-\oGeyT+K>朔*R\{Tw!m ߕ|wL_|t5Wc3RޑT2VH(%1 |q2~)/f$ÞWz.9927^Lnxb|%//f$הVtx+J':A ~ ~חޜ#ڢo/f$9%gA2xZi$'|1)/xbp1CW}|?6ZlV[,;mr y[+lq;x7^mG _9-} s]/}-s_-e$?I^c[mm-)x3vk;0kIoɟD5">[m'CU?}@|?6#{`ϸ7p^=% i9ȟCw |_i".붺*/=ă'ȟ6W]໒UmE،W3^E|գޘ3߆]7 m;o7|?6#I *kˉ?ߤ"5lt>.k&YN\?C#l'|k3?M,"O^CF7}/|?6%%L?57  &.|=uD__Hh6^do3P7w!vE،fW@kô%NOmmv&~77ѽ3uNj;%YYje]!߅7g] /E_99n}f˒&첌a=Ypr3 ?3"lF221% l-{& bReD+g/ ?lE،O#W H NE~1$O~18<Cler|>?!<Ĝ䟑k[Ew 5|?6"{xŽCǑ[7"]]E،dcc+?~D~9E)mD9j&߇_J~J-t/f$ W)eU"VG [#b+p{NHUb-ɿ"lF5_d=}cG68<~æz]wۂ~=,,S |!/ $#*t/c3>s`ʇՌ>? B#'_]qq"l''7ʮa1}0ׯ,d?Bt??/朼x6x@/B,/xF O,._|t%?/f$=p,EB;)ZKJU_=~O?tC_$wy]U1տSJ)|ea:g>?|Ӻ}<'Y~uOZ:4 ix#3?/MB%b}r-|)g&m%Oh.«!!rVm7<飋.ƺ@js|$Si .|W F}Wtd(P7Siw\yVruGy~Q\g&4l^֓~G2uIc~33%򤯗|R˧>I(o6xO9k $TRN H,G{/{Vǎl'FU8'g.ZzFyKUO' )=Hişg׷x_xy{vnޛOg<^ei|9<'rH-⼳be%xoZubu4!v8b |mo Y:8r&+$(_*%d,{m%oWb _r6u+gc9㥕OO^챇,ƪHϐ>3K~eߓ2Or|)! /-dԕ\RZ~8ɦ.|28Q(zz/=ngS>龆1,A/+;cmä`U$ux?;;=Ird0|Wo 00DArial Blackman|d0|Wo 0"@DWingdingskman|d0|Wo 0PDSymbolgskman|d0|Wo 0 a.  @n?" dd@  @@``_FL2Ldrumroll.wav.WAV 10110KRIFFKWAVEfmt ++dataK||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||ggg`N9@DGK`kdn`gryy||unrdYRNNGKGGGNGGGNUYYkuyyuungkdYG@@@GNRRUR\dgy|nn`rNK@KRGDKGYDR\dgk||||r`y`YdKGD9KK``nnyyu||YUgrukYYRKNUGY`kgkdryggUUu`\RnU`\uu\y|u|y||ugrr|`\uggurunuuykrunuy|y||nnnrgrdrUYdr|r|ykyyy||||ykkuunn|kuugynrnr|||uu|yukukr|u||nd|r|y||yyr||||ynn|||uu|ygdgdRDYRY`ud\Rgy|ryyynykr|gr\RUnRUkdUR\YgY`un|rnddn`\RKKYR\NYYkyyyy||gUkgKUK?$b$8$ 'XwC( 0p< cw;(@8  uʚ;hށ5ʚ;g42d2d0pppp@ <4!d!d 0,<4dddd 0,x___PPT9ZR ? %O =x&Recent Progress of Grid-Block Designs ''6( '  Hung-Lin Fu (P F` ) Department of Applied Mathematics National Chiao Tung University Hsin-Chu, Taiwan (e z N  'Y x[)fzZ(U (v   +           H-Packing" 66  :An H-packing of a graph G is a collection of edge-disjoint subgraphs of G such that each of them is isomorphic to H. If G is exactly the union of subgraphs in an H-packing of G, then we call the H-packing an H-design of G. If G is the complete graph of order n, then we have an H-packing or an H-design of order n.;< < f/ < < >< < < < @;   M    +Graph Decomposition  In term of graph decomposition, an H-design of G is equivalent to a decomposition of the graph G into isomorphic copies of H. We refer to the subgraphs isomorphic to H as the members of the decomposition. Moreover, if the members are complete graphs of order k, then an Kk-design of order n is a balanced incomplete block design with block size k and l = 1.fZ W*(M  ((@   w  V Well-Known H-Designs  <A K3 -design of order n exists if and only if n 1 or 3(mod 6). (Steiner triple system of order n, STS(n)) n = 9 (Affine plane of order 3) 1 2 3 1 4 7 1 5 9 1 6 8 4 5 6 2 5 8 2 6 7 2 4 9 7 8 9 3 6 9 3 4 8 3 5 7P+< < 5< cw< cw< cwcw&r    K4-Designs0 6 6 6  A K4 -design of order n exists if and only if n 1 or 4(mod 12). n = 16 (Affine plane of order 4) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (*) Using 3 mutually orthogonal latin squares of order 4 to construct the Affine plane.cZZ< < < "!cw+ZI    $    Grid-Block 6  hDefine G(r,c) as the grid-block with r rows and c columns where each grid point is a (distinct) vertex and two vertices are collinear if they are on the same row or column. If we define a graph from G(r,c) by letting two vertices be adjacent if and only if they are collinear, then G(r,c) is isomorphic to the Cartesian product of Kr and Kc denoted by Kr x Kc.iZ < ] cw<      @R      An Example   sThe green and pink grid-blocks pack K9. Therefore, a G(3,3)-design or a 3x3 grid-block design of order 9 exists! r%;; ;;cws  The Existence of G(r,c)-Designs 6  ,If a G(r,c)-design of order n exists then the following conditions hold: (a) rc n, (b) r+c-2 divides n 1, and (c) rc(r+c-2) divides n(n-1).PINI(C((@P  *   Lattice Rectangles6  4A G(r,c)-design is called a lattice square provided that r = c = n1/2 named by Yates, 1940. Construction of lattice squares for n1/2 an odd prime power was given by Raghavarao in 1971. Lattice squares were extended to lattice rectangles ( r c and rc = n) by Harshbarger in 1947.@  : ( (+( (  Z   I         Real World 6  In most practical uses, the grid-block has size limitation and n is large. Thus, we have to consider the G(r,c) s with r < n1/2 and c < n1/2 , while preserving the unique collinearity condition, i.e. every pair of vertices occur at most once in the same row or column. This is one of the reasons we study G(r,c)-design or G(r,c)-packing.VK0  (r( (  &     Resolvable Packing6  lA G(r,c)-packing of order n is said to resolvable if the collection of grid-blocks can be partitioned into subclasses R1, R2, & , Rt such that every vertex of Kn is contained in precisely one grid-block of each class. Each Ri is called a resolution class. Clearly, such a packing exists only when rc divides n.*7 E    ?  (+ t    >  G     A G(4,4)-Packing of order 16   Resolvable( " d    'A Resolvable G(3,3)-Packing of order 18(( (  1 A Cyclic G(2,4)-Design  n = 33   Known Grid-Block Designs  jA G(2,2)-design of order n exists if and only if n 1(mod 8). This is also known as the 4-cycle system of order n. A G(2,3)-design of order n exists if and only if n 1(mod 9). (J. E. Carter, 1989) A G(3,3)-design of order n exists if and only if n 1 or 9(mod 36). (Fu-Hwang-Jimbo-Mutoh-Shiue, JSPI 2004)6((+D(7(=!@      - G(3,3)-Design.666  2Outline of proof. 1. A G(3,3) design of order 9 exists. 2. Let p be an odd prime and v p(mod 2p(p-1)). If there exists a cyclic (v,p,1)-BIBD, then there exists a G(p,p)-design of order pv. (F-H-J-M-S) 3. A cyclic (12k+3,3,1)-BIBD exists. A G(3,3)-design of order 36k+9 exists.(:N )< &  \ 2!n 1(mod 36) ,6 6  The proof can be obtained right away if there exists an (n,9,1)-BIBD of order n = 36k+1. (See it?) The proof can also be obtained by using the existence of a (k,s,1)-BIBD, a G(3,3)-design of order 37 and a G(3,3)-design of Ks(36). (One vertex in common)|Y L   /Cyclic Constructions  A cyclic (72t+1,3,1)-BIBD and a cyclic (72t+37,3,1)-BIBD exist. Use Peltesohn s result (1938), we have five classes of base blocks for 72t+1 case: (a) for x = 0, 1, & , 3t-1, we have (0,1+2x,33t+1+x), (0,9t+1+2x,27t+1+x) and 0,9t+2+2x,18t+2+x), (b) for x = 0, 1, & , 3t-2, we have (0,2+2x,24t+2+x) and (c) (0,6t,24t+1). Use an imagination to put them together as grid-blocks (mainly by Mutoh).Z(((%(  (8&D   ; 03#4x4 Grid-Blocks0  UBy using the following grid-block we obtain a 4x4 grid-block design of order 97. (?)  VQ0 V 4$A G(4,4)-Design of K4(4)$  Let the 4 partite sets of K4(4) be {0,1,2,3}. {4,5,6,7}, {8,9,10,11} and {12,13,14,15}. The following two grid-blocks form the design.$i  5% n+1 mn+1 Construction!!&   Theorem If a G(r,c)-design of Kn+1 and Km(n) exists respectively, then a G(r,c)-design of Kmn+1 exists. So, for G(4,4)-designs, we need a design of K97 to start with and we have constructed earlier. It s left to find a G(4,4)-design of Km(96) for proper m.ZgZZ.6W@%  :   6&Continued &    Proposition For m 4, a G(4,4)-design of Km(96) exists. Note A 4-GDD of type 24m exists for each m 4. Using this fact and a G(4,4)-design of K4(4) we can prove the proposition. (?) Z2ZZZ  ((((  7'The Missing Cases  rTheorem A G(4,4)-design of Kv exists if and only if v 1 (mod 96) except possibly v = 193 and v = 289. This is by the reason that the proposition works only for m 4. (Too bad!)( ((2(:( &    8(Joint Effort works!0  With the help from Zhang and Ge from Zhejiang Univ. the missing orders are settled now. Since it is quite complicate to put them up here, I only show you the key array we apply. (This one for v = 193.)(@      9)The case v = 289  We also list a useful array here. Since 289 = 172, we have a finite field of order 289. Let w be a root of a primitive polynomial w2 + w + 3. Then we can use wi as its elements. For convenience, we only list the exponents in the following array.1((,('((((W(  ;+4x4 Grid-Block Design  Combining the works above we have proved the following theorem. Theorem. A 4x4 grid-block design of order v exists if and only if v is congruent to 1 modulo 96.H? (=(  :*3x4 Grid-Block Design  2If a 3x4 grid-block design of order v exists, then v 1, 16, 21, 36 (mod 60). The cases v 1, 21 (mod 60) have been settled. (Zhang,Ge, Fu, Kuo) The other two cases remain unsolved. v = 16 is not possible. v = 36 and 76 are O.K. We need more input to settle the remaining cases.XZ5$$(@     Results on Packings6&    RFor practial use, we focus on resolvable G(r,c)-packings. Therefore, we consider only the cases rc divides n. In a resolvable G(r,c)-packing the number of resolution classes t is at most (v-1)/(r+c-2). If a resolvable G(r,c)-packing has this number of resolution classes, then it is optimal. ()P)(   ;Z   "   )   Optimal Resolvable Packings6&   There exists an optimal resolvable G(2,2)-packing of order n for each n 0(mod 4). This is also a resolvable maximum 4-cycle packing of order n. An optimal resolvable G(q,q)-packing of order qm exists for a prime power q and an integer m. Moreover, when m is even and q is odd, we have a resolvable G(q,q)-design of order qm. (M-J-F, 2004)W# Wk@     !Ready for Tests?6  yIn DNA library screening, we have a set of oligonucleotides (clones) and a probe X which is a short DNA sequence. Let X denote the dual sequence of X obtained by first reversing the order of letters and then interchanging A with T and C with G. A clone is called positive if it contains X as a subsequence and negative if not. The goal is to identify all the positive clones.z%('(2&+  ? " Group Testing6  -Economy of time and costs requires that the clones be assayed in groups. Each group is called a pool. A pool gives a negative outcome, all clones contained in it are found to be negative. On the other hand, if a pool is positive, at the second stage we test each clone individually. Two-stage Test! V.`(,  . #Library Screening6  4In such screening, a microtiter plate, which is an array with size 8 x 12 or 16 x 24, etc. is utilized and different clones are settled in each spot, called well, of the plate. Every row and every column in a microtiter plate is tested at the same time as a pool in the first stage. (r + c tests for a plate)T5 ~ (@      Y $      !"#&'Basic Matrix Method0  yIf there is only one row (or column) of positive then we can determine the positive clones without the second stage test.>z(W z %More Positive Clones0  For example if two rows and two columns are positive as follows, then we can not determine whether the four clones settled at the crossing wells of positives are really positive or not.2I`  &Unique Collinearity Condition&     Thus, if it is allowed to test more than twice for each clone, then it is desired that every two clones occur at most once in the same row or the same column, which is called the unique collinearity condition (UCC). The efficiency of UCC was shown by Barillot et al (1991,simulation) and proved theoretically by Berger et al in 2000 at Biometrics. So, corresponds to grid-block packing.Z((#    ( @   4    'Why Resolvable Packings?&   jThe replication number of a vertex v in a grid-block packing is the number of grid-blocks in which v is in there. It is a favorite property that the number of replications of each clone should be almost the same in the first stage. So, take a resolution class and test (group) each grid-block at the same time guarantees the above equal replication property. `kU(c  k ,Analysis of Replications  A simulation result of a comparison between constant replications and random replications shows that we need less tests to find all the positives by using grid-block packings with constant replications. As an example, if we have 1,000 clones and 0.1 is the probability of positives, then it takes around 600 tests (Constant R.) and 750 tests (Random R.) to find all the positives respectively. (M-J-F, 2004)Z,( ( ((C&    * References   E. Barillot, B. Lacroix and D. Cohen, Theoretical analysis of libraray screening using an N-dimensional pooling strategy, Nucleic Acids Research, 19 (1991), 6241-6247. T. Berger, J. W. Mandell and P. Subrahmanya, Maximally efficient two-stage screening, Biometrics, 56 (2000), 833-840. J. E. Carter, Designs on cubic multigraphs, Ph.D. thesis in McMaster University, 1989. H. L. Fu, F. K. Hwang, M. Jimbo, Y. Mutoh and C. L. Shiue, Decomposing complete graphs into Kr x Kc s, J. Statistical Planning and Inference, 119(2) (2004), 225-236. B. Harshbarger, Rectangular lattices, Va Agri. Exp. Stn. Memoir 1, 1947. Y. Mutoh, T. Morihara, M. Jimbo and H. L. Fu, The existence of 2x4 grid-block designs and their applications, SIAM. J. Discrete Math.,16 (2003), 173-178. Y. Mutoh, M. Jimbo and H. L. Fu, A resolvable r x c grid-block packing and its application to DNA library screening, Taiwanese J. Math., Vol. 8, No. 4, Dec. 2004, 713-737. D. Raghavarao, Constructions and combinatorial problems in design of experiments, Wiley, New York, (1971). F. Yates, Lattice squares, J. Agri. Sci., 30 (1940), 672-687.SZ&(('(? (( ((  (h"((((()"(6(-(3(4( %+((%(    &   r     j      ,    (  F                |      (  b Thank you for your attention. !t ZZZ,66 <P(&!    %  )4e(  4r 4 S ?P  j17   @`  8 <?P  j20   @`  8 <? P  [6   @`  8 <? P  [5   @`  8 <H[? P  [4   @`  8 <.? P  [3   @` 8 < "? P   [2   @` 8 <? P  [1   @` 8 <C?P  [0   @` 8 <ĔX?P   f   @`fB 8 6o ?P P `B 8 01 ?  `B 8 01 ?P P `B 8 01 ?fB 8 6o ?PPfB 8 6o ?P P`B 8 01 ?P P`B 8 01 ? P P`B 8 01 ? P PfB 8 6o ?P PH 8 0޽h ? ___3̙3f3g  @(  @ @ S [pP<$D 0    @ S Pj <$D 0   @ C AC:\Program Files\Common Files\Microsoft Shared\Clipart\cagcat50\SY00451_.wmf >X,$D 0  @ <n  7,$D 0 mThis result reserves to have an    H @ 0޽h ? ___3̙3f3  <$(  <r < S h֭pP   r < S ڭ   H < 0޽h ? ___3̙3f3r8@ 6; ՜.+,0    F pùjpA-Mathj#[( /Arial sөTimes New Roman Arial Black WingdingsSymbolBamboo'Recent Progress of Grid-Block Designs H-PackingGraph DecompositionWell-Known H-Designs K4-Designs Grid-Block An Example The Existence of G(r,c)-DesignsLattice Rectangles Real WorldResolvable PackingA G(4,4)-Packing of order 16(A Resolvable G(3,3)-Packing of order 18A Cyclic G(2,4)-DesignKnown Grid-Block DesignsG(3,3)-Designn k 1(mod 36) Cyclic ConstructionsPowerPoint ²4x4 Grid-BlocksA G(4,4)-Design of K4(4)!n+1 mn+1 Construction Continued KThe Missing CasesJoint Effort works!The case v = 2894x4 Grid-Block Design3x4 Grid-Block DesignResults on PackingsOptimal Resolvable PackingsReady for Tests?Group TestingLibrary ScreeningBasic Matrix MethodMore Positive ClonesUnique Collinearity ConditionWhy Resolvable Packings?Analysis of Replications ReferencesPowerPoint ²  ϥΦr ²]pd vD(